Navdeep Goel, Jaspinder Kaur. Analysis of PC6 window function using fractional Fourier transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170745. doi: 10.12086/oee.2018.170745
Citation: Navdeep Goel, Jaspinder Kaur. Analysis of PC6 window function using fractional Fourier transform[J]. Opto-Electronic Engineering, 2018, 45(6): 170745. doi: 10.12086/oee.2018.170745

Analysis of PC6 window function using fractional Fourier transform

More Information
    Author Bio: Navdeep Goel(1978-), male, assistant professor (ECE). His research interests include signal processing, image processing, fractional transforms. E-mail: navdeepgoel@pbi.ac.in .
    Corresponding author: Navdeep Goel, E-mail: navdeepgoel@pbi.ac.in
  • Overview:Fractional Fourier transform (FRFT) is a linear transform generalizing Fourier transform (FT) that plays an important role in the field of signal processing and analysis. FRFT contains an adjustable parameter α, with which it rotates the signal in the time frequency plane and represents the signal in an intermediate domain between time and frequency. FRFT provides a measure about the angular distribution of signal's energy in time frequency plane. FT is a special case of FRFT when angle α is equal to π/2. Window functions have also played an important role in digital signal processing and analysis, digital filter design and speech processing. These are used in harmonic analysis to reduce the effects of spectral leakage. A window function which gives a spectrum that has minimum leakage is preferred. In signal processing, a window function also known as an apodization function or tapering function is a mathematical function that is zero valued outside of some chosen interval. When a signal or function is multiplied by window function it also becomes zero outside the chosen interval. A complete review of window functions and their properties using discrete FT (DFT) was presented by Harris. Over time, many window functions, have derived to optimize some features of a new window and for easy implementation. A practical window usually has a trade-off between the width of its main lobe and attenuation of its side lobes. No window function is found to be best in all aspects, so one should select a window function according to the requirement of a particular application.

    This paper presents mathematical model for obtaining FRFT of PC6 window function. The different parameters of this window function are also obtained with the help of simulation results. A comparison of window function parameters is presented using FT and FRFT. Also comparison of this window function with Hanning window function is presented in terms of Side Lobe Fall off Rate (SLFOR). For different values of FRFT order, PC6 window function shows variation in different parameters. Thus by changing the FRFT order, the minimum stop band attenuation of the resulting window function can be controlled. The FRFT analysis of PC6 window function has been carried out for different values of FRFT order a. For PC6 window function, when θ is 1, Parzen window results, and when θ is 0, cos6t) window results and for PC6 window θ is taken 1.29. As FRFT order a is decreased, MSLL starts building up, HMLW, -3 dB BW and -6 dB BW are decreasing which is good for spectral analysis and SLFOR is decreasing. CG is decreasing and ENBW is increasing which is undesirable. The CG should be high and ENBW should be low to minimize spectral leakage.

    Also comparison plots show that combinational window provide better far end attenuation as compared to Hanning window function. Thus this study reveals that there are variations in window parameters with variations in FRFT order. Using FRFT best solution can be obtained for variety of practical applications. So the choice of window function should be as per the concluded benefit and drawbacks to get optimum performance for specific applications.

  • 加载中
  • Figure 1.  Log magnitude plots of window functions. (a) Parzen window function in time domain; (b), (c) Log magnitude plot of Parzen window function at a=1 and 0.7; (d) cos6t) window function in time domain; (e), (f) Log magnitude plot of cos6t) window function at a=1 and 0.7; (g) PC6 window function in time domain; (h), (i) Log magnitude plot of PC6 window function at a=1 and 0.7

    Figure 2.  (a), (b) Log magnitude plots of Parzen and Hanning window function at a=1 and 0.6; (c), (d) Log magnitude plots of cos6t) and Hanning window function at a=1 and 0.6; (e), (f) Log magnitude plots of PC6 and Hanning window functions at a=1 and 0.6

    Figure 3.  (a), (b) The continuum of FRFT of Parzen window function; (c), (d) The continuum of FRFT of cos6t); (e), (f) The continuum of FRFT of PC6 window function

    Table 1.  Parameters of Parzen window function (θ=1) with variations in FRFT order a

    Sr. No. a MSLL/dB HMLW/(bins) -3 dB BW/(bins) -6 dB BW/(bins) SLFOR/ (dB/octave) CG ENBW/ (bins)
    1 1.0 -53.00 3.24 1.82 2.55 -24.00 0.76 3.84
    2 0.9 -52.89 3.20 1.82 2.52 -23.03 0.71 2.15
    3 0.8 -52.79 3.08 1.80 2.44 -23.34 0.52 4.27
    4 0.7 -52.72 2.88 1.68 2.28 -30.78 0.49 4.14
    5 0.6 -52.67 2.64 1.48 2.08 -31.29 0.44 4.16
    6 0.5 -52.79 2.30 1.34 1.82 -29.26 0.35 4.78
    7 0.4 -52.76 1.91 1.10 1.50 -19.00 0.26 6.36
    8 0.3 -52.52 1.49 0.86 1.18 -20.21 0.15 9.25
    9 0.2 -52.48 1.02 0.59 0.80 -20.87 0.11 7.23
    10 0.1 -51.41 0.54 0.34 0.44 -23.90 0.04 7.00
    下载: 导出CSV

    Table 2.  Parameters of cos6t) window function (θ=0) with variations in FRFT order a

    Sr. No. a MSLL/dB HMLW/(bins) -3 dB BW/(bins) -6 dB BW/(bins) SLFOR/ (dB/octave) CG ENBW/ (bins)
    1 1.0 -60.95 3.91 2.24 3.08 -42.00 0.74 1.46
    2 0.9 -60.77 3.84 2.02 2.86 -48.32 0.29 16.10
    3 0.8 -60.66 3.71 1.96 2.68 -48.44 0.27 16.75
    4 0.7 -60.63 3.47 1.90 2.60 -48.65 0.26 16.50
    5 0.6 -60.59 3.15 1.66 2.34 -48.33 0.24 15.00
    6 0.5 -60.52 2.76 1.52 2.06 -48.14 0.20 15.05
    7 0.4 -60.23 2.31 1.28 1.73 -48.05 0.14 20.33
    8 0.3 -59.76 1.80 0.94 1.32 -47.68 0.12 19.02
    9 0.2 -58.28 1.25 0.68 0.94 -46.58 0.12 6.26
    10 0.1 -86.57 0.80 0.38 0.50 -46.57 0.06 5.46
    下载: 导出CSV

    Table 3.  Parameters of PC6 window function (θ=1.29) with variations in FRFT order a

    Sr. No. a MSLL/dB HMLW/(bins) -3 dB BW/(bins) -6 dB BW/(bins) SLFOR/ (dB/octave) CG ENBW/ (bins)
    1 1.0 -50.03 2.82 1.69 2.40 24.05 0.84 1.84
    2 0.9 -48.51 2.78 1.68 2.30 34.17 0.88 1.32
    3 0.8 -49.94 2.69 1.60 2.16 26.38 0.54 3.93
    4 0.7 -49.89 2.51 1.52 2.04 26.57 0.50 3.97
    5 0.6 -49.83 2.30 1.40 1.98 27.54 0.44 4.00
    6 0.5 -49.68 2.01 1.22 1.68 26.29 0.38 4.06
    7 0.4 -49.54 1.68 0.98 1.36 26.32 0.27 5.11
    8 0.3 -48.97 1.31 0.84 1.10 26.12 0.19 5.20
    9 0.2 -47.14 0.92 0.56 0.76 25.43 0.12 5.65
    10 0.1 -51.38 0.56 0.34 0.42 23.68 0.05 7.48
    下载: 导出CSV
  • [1]

    Antoniou A. Digital Signal Processing:Signals, Systems, and Filters[M]. New York:McGraw-Hill, 2005.

    [2]

    Bracewell R N. The Fourier Transform and Its Application[M]. New York:McGraw-Hill, 1986.

    [3]

    Almeida L B. The Fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11):3084-3091. doi: 10.1109/78.330368

    [4]

    Ozaktas H M, Zalevsky Z, Kutay M A. The fractional Fourier transform: with applications in optics and signal processing[M]. New York:Wiley, 2001.

    [5]

    Mendlovic D, Ozaktas H M. Fractional Fourier transforms and their optical implementation:I[J]. Journal of the Optical Society of America A, 1993, 10(9):1875-1881. doi: 10.1364/JOSAA.10.001875

    [6]

    McBride A C, Keer F H. On Namias's fractional Fourier transforms[J]. IMA Journal of Applied Mathematics, 1987, 39(2):159-175. doi: 10.1093/imamat/39.2.159

    [7]

    Namias V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3):241-265. doi: 10.1093/imamat/25.3.241

    [8]

    Lohmann A W. Image rotation, wigner rotation, and the fractional Fourier transform[J]. Journal of the Optical Society of America A, 1993, 10(10):2181-2186. doi: 10.1364/JOSAA.10.002181

    [9]

    Kutay M A, Ozaktas H M. Optimal image restoration with the fractional Fourier transform[J]. Journal of the Optical Society of America A, 1998, 15(4):825-833. doi: 10.1364/JOSAA.15.000825

    [10]

    Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms[J]. Journal of the Optical Society of America A, 1994, 11(2):547-559. doi: 10.1364/JOSAA.11.000547

    [11]

    Pei S C, Yeh M H. Fractional time-frequency distributions[C]//Proceedings of 1997 IEEE International Symposium on Circuits and Systems, Hong Kong, 1997: 2673-2676.https://www.researchgate.net/publication/3702356_Fractional_time-frequency_distributions

    [12]

    Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications[J]. IEEE Transactions on Signal Processing, 2001, 49(8):1638-1655. doi: 10.1109/78.934134

    [13]

    Papoulls A. Signal Analysis[M]. New York:McGraw-Hill, 1977.

    [14]

    Gautam J K, Kumar A, Saxena R. Windows:A tool in signal processing[J]. IETE Technical Review, 1995, 12(3):217-226. doi: 10.1080/02564602.1995.11416530

    [15]

    Weisstein E W. CRC Concise Encyclopedia of Mathematics[M]. 2nd ed. US:Taylor & Francis, 2002.

    [16]

    Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1):51-83. http://cn.bing.com/academic/profile?id=4d9546249c5c18363f7f4bc94ced9185&encoded=0&v=paper_preview&mkt=zh-cn

    [17]

    Bergen S W A, Antoniou A. Design of ultraspherical window functions with prescribed spectral characteristics[J]. EURASIP Journal on Applied Signal Processing, 2004, 2004:2053-2065. http://cn.bing.com/academic/profile?id=a85f323828832cb0585a3d43ef50c97a&encoded=0&v=paper_preview&mkt=zh-cn

    [18]

    Gautam J K, Kumar A, Saxena R. On the modified Bartlett-Hanning window (family)[J]. IEEE Transactions on Signal Processing, 1996, 44(8):2098-2102. doi: 10.1109/78.533733

    [19]

    Nuttall A H. Some windows with very good sidelobe behavior[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 29(1):84-91. http://cn.bing.com/academic/profile?id=f9da287beae311fd6a4b7b03f21355b2&encoded=0&v=paper_preview&mkt=zh-cn

    [20]

    Ha Y H, Pearce J A. A new window and comparison to standard windows[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(2):298-301. doi: 10.1109/29.21693

    [21]

    Geckinli N, Yavuz D. Some novel windows and a concise tutorial comparison of window families[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6):501-507. doi: 10.1109/TASSP.1978.1163153

    [22]

    Kumar S, Singh K, Saxena R. Analysis of dirichlet and generalized " Hamming" window functions in the fractional Fourier transform domains[J]. Signal Processing, 2011, 91(3):600-606. doi: 10.1016/j.sigpro.2010.04.011

    [23]

    Sharma S N, Saxena R, Saxena S C. Tuning of FIR filter transition bandwidth using fractional Fourier transform[J]. Signal Processing, 2007, 87(12):3147-3154. doi: 10.1016/j.sigpro.2007.06.005

    [24]

    Goel N, Singh K. Analysis of Dirichlet, Generalized Hamming and Triangular window functions in the linear canonical transform domain[J]. Signal, Image and Video Processing, 2013, 7(5):911-923. doi: 10.1007/s11760-011-0280-2

    [25]

    Goel N, Singh K. A modified convolution and product theorem for the linear canonical transform derived by representation transformation in quantum mechanics[J]. International Journal of Applied Mathematics and Computer Science, 2013, 23(3):685-695. http://cn.bing.com/academic/profile?id=7fb2fa029853400ff2c029da061db312&encoded=0&v=paper_preview&mkt=zh-cn

    [26]

    Goel N, Singh K. Modified correlation theorem for the linear canonical transform with representation transformation in quantum mechanics[J]. Signal, Image and Video Processing, 2014, 8(3):595-601. doi: 10.1007/s11760-013-0564-9

    [27]

    Saxena R, Singh K. Fractional Fourier transform:A novel tool for signal processing[J]. Journal of Indian Institute of Science, 2005, 85(1):11-26. http://cn.bing.com/academic/profile?id=89dc07f8f8f94f876bf4fa140f01e80e&encoded=0&v=paper_preview&mkt=zh-cn

    [28]

    Narayanan V A, Prabhu K M M. The fractional Fourier transform:theory, implementation and error analysis[J]. Microprocessors and Microsystems, 2003, 27(10):511-521. doi: 10.1016/S0141-9331(03)00113-3

    [29]

    Sharma S N, Saxena R, Saxena S C. Design of FIR filters using variable window families:A comparative study[J]. Journal of Indian Institute of Science, 2004, 84(5):155-161. https://www.researchgate.net/publication/242690781_Design_of_FIR_filters_using_variable_window_families_A_comparative_study

    [30]

    Sharma S N, Saxena R, Jain A. FIR digital filter design with Parzen and Cos6t) combinational window family[C]// Proceedings of the 6th IEEE International Conference on Signal Processing, Beijing, China, 2002: 92-95.https://www.researchgate.net/publication/4003571_FIR_digital_filter_design_with_Parzen_and_Cos6_p_t_combinational_window_family

  • 加载中

(3)

(3)

计量
  • 文章访问数:  6533
  • PDF下载数:  2460
  • 施引文献:  0
出版历程
收稿日期:  2017-12-31
修回日期:  2018-02-21
刊出日期:  2018-06-01

目录

/

返回文章
返回