地基中波红外测量系统的灰度漂移补偿

赵云, 李满良, 崔植, 等. 地基中波红外测量系统的灰度漂移补偿[J]. 光电工程, 2018, 45(4): 170535. doi: 10.12086/oee.2018.170535
引用本文: 赵云, 李满良, 崔植, 等. 地基中波红外测量系统的灰度漂移补偿[J]. 光电工程, 2018, 45(4): 170535. doi: 10.12086/oee.2018.170535
Zhao Yun, Li Manliang, Cui Zhi, et al. Compensation of gray value drift for ground-based MWIR measurement system[J]. Opto-Electronic Engineering, 2018, 45(4): 170535. doi: 10.12086/oee.2018.170535
Citation: Zhao Yun, Li Manliang, Cui Zhi, et al. Compensation of gray value drift for ground-based MWIR measurement system[J]. Opto-Electronic Engineering, 2018, 45(4): 170535. doi: 10.12086/oee.2018.170535

地基中波红外测量系统的灰度漂移补偿

详细信息
    作者简介:
    通讯作者: 赵云, E-mail: pbzhaoyun@163.com
  • 中图分类号: TN219

Compensation of gray value drift for ground-based MWIR measurement system

More Information
  • 灰度漂移是地基中波红外测量系统标定和测量的主要误差来源之一。通过研究外场辐射标定时环境温度对中波红外测量系统输出灰度的影响,发现了灰度随环境温度漂移的规律,找到了灰度漂移的原因,推导了环境温度与灰度漂移的关系,提出了基于环境温度的灰度漂移补偿方法。实验结果表明,文中所提方法能有效补偿红外测量系统的灰度漂移量,降低中波红外测量系统受环境温度变化引起的灰度漂移。

  • Overview: With the development of infrared detectors and atmosphere measurement technology, infrared radiation characteristics measurement is applied to more and more important field of measurement. As infrared radiation characteristics measurement is the main method for the precaution and discrimination of missiles, relevant research is worthy in military application. Nowadays, infrared device is applied in the tracking and measurement of infrared target. To realize the quantitative measurement of space moving target infrared radiation, infrared radiation measurement system must be calibrated in advance. The infrared radiation calibration is the precision reference of infrared radiation characteristics. To ensure the accuracy of radiation measurement, it is necessary to calibrate the infrared radiation measurement system. The related researches in the past show that the results of infrared radiation characteristics measurement is affected by the change of environment temperature. However, even at the same environment and blackbody temperature, when we use extended area blackbody to radiation calibration, the output gray of infrared radiation characteristics measurement is drifting. We consider that the reason of gray value drift must be the stray radiation. After this, we conduct an experiment at different environment and same blackbody temperature, the results show that the gray value will be drifted when the blackbody temperature is higher than environment temperature, and the gray value drift of infrared radiation measurement system is time-varying. Meanwhile, because extended area blackbody must be heated to a high temperature, and the distance between extended area blackbody and lens cone of infrared radiation measurement system is so close, the primary cause of gray value drift is the heat of extended area blackbody. In this paper, the environment temperature of infrared detector is defined as ambient temperature and the gray value drift of infrared radiation measurement system is caused by the change of ambient temperature. Because we think the output gray value of infrared radiation measurement system is constant at an one certain blackbody temperature in advance, the gray value drift caused by the change of ambient temperature is one of the significant errors in radiation calibration and measurement. In order to reduce the output gray value of infrared radiation characteristics measurement caused by ambient temperature, we conduct an experiment to find the relationship between ambient temperature and gray value drift. At last, the reason of gray value drift of infrared system is found, a gray value drift compensation method based on ambient temperature is proposed by analyzing the data of experiment, and the relationship between ambient temperature and gray value drift was derived. A calibration experiment is designed for verification, and the results indicated that before and after gray drift compensation the max gray drift error is 23.87% and 1.54% at integration time of 2 ms, the max gray drift error is 15.33% and 0.96% at integration time of 4 ms. The method in this paper can compensate gray value drift effectively at any ambient temperature and integration time of infrared radiation characteristics measurement system that can reduce the gray value drift caused by ambient temperature which is measured in real time.

  • 加载中
  • 图 1  扩展源黑体辐射标定示意图

    Figure 1.  Schematic diagram of radiation calibration system using extended area blackbody

    图 2  不同环境温度下的漂移曲线

    Figure 2.  Drift curve at different ambient temperatures

    图 3  黑体和环境温度一致时的漂移曲线

    Figure 3.  Drift curve for the same temperature between blackbody and ambiance

    图 4  积分时间为2 ms时的红外探测器标定曲线

    Figure 4.  Calibration curve for infrared detector at integration time of 2 ms

    图 5  同一黑体温度下输出灰度漂移量与环境温度的关系

    Figure 5.  Relationship between gray value drift and ambient temperature at same blackbody temperature

    图 6  红外探测器灰度漂移补偿修正前后的灰度值。(a)积分时间2 ms;(b)积分时间4 ms

    Figure 6.  Original and corrected gray level of infrared detector. (a) Integration time of 2 ms; (b) Integration time of 4 ms

    表 1  灰度漂移补偿前后的结果

    Table 1.  The results before and after gray drift compensation

    Integration
    time/ms
    Ambient
    temperature/℃
    Gray level/DN Error of gray level/% Corrected gray level/DN Correction error of gray drift/%
    2 21.8 2326 21.68 2971 0.03
    23 2520 15.15 2998 0.93
    25.4 2848 4.11 2972 0.06
    25.8 2903 2.26 2965 0.16
    26.4 3009 1.31 2978 0.25
    27.4 3169 6.70 2978 0.25
    28.1 3290 10.77 2984 0.46
    28.8 3400 14.48 2976 0.21
    29.6 3524 18.65 2963 0.23
    29.9 3591 20.91 2978 0.27
    30.4 3653 23.00 2952 0.61
    30.7 3679 23.87 2924 1.54
    4 21.8 7935 13.91 9219 0.02
    23 8320 9.73 9271 0.58
    25.4 8972 2.66 9218 0.02
    25.8 9085 1.43 9209 0.09
    26.4 9297 0.87 9235 0.19
    27.4 9615 4.32 9234 0.18
    28.1 9850 6.87 9240 0.25
    28.8 10070 9.25 9227 0.11
    29.6 10319 11.96 9203 0.15
    29.9 10456 13.44 9236 0.21
    30.4 10578 14.77 9183 0.37
    30.7 10630 15.33 9128 0.96
    下载: 导出CSV
  • [1]

    孙志远, 常松涛, 朱玮.中波红外探测器辐射定标的简化方法[J].红外与激光工程, 2014, 43(7): 2132–2137. http://cqvip.com/QK/91846A/201407/661771709.html

    Sun Z Y, Chang S T, Zhu W. Simplifying method of radiance calibration for MWIR detector[J]. Infrared and Laser Engineering, 2014, 43(7): 2132–2137. http://cqvip.com/QK/91846A/201407/661771709.html

    [2]

    李宁, 杨词银, 曹立华, 等. 3~5 μm红外焦平面阵列的辐射定标[J].光学精密工程, 2011, 19(10): 2319–2325. http://www.opticsjournal.net/abstract.htm?aid=OJ111109000101B9EbHd

    Li N, Yang C Y, Cao L H, et al. Radiance calibration for 3~5 μm infrared focal plane array[J]. Optics and Precision Engineering, 2011, 19(10): 2319–2325. http://www.opticsjournal.net/abstract.htm?aid=OJ111109000101B9EbHd

    [3]

    曹立华, 李宁, 杨词银, 等. 3~5 μm红外探测器的辐射定标[J].红外与激光工程, 2012, 41(4): 858–864. http://d.wanfangdata.com.cn/Periodical_hwyjggc201204006.aspx

    Cao L H, Li N, Yang C Y, et al. Radiance calibration for 3~5 μm infrared detector[J]. Infrared and Laser Engineering, 2012, 41(4): 858–864. http://d.wanfangdata.com.cn/Periodical_hwyjggc201204006.aspx

    [4]

    刘俊池, 李洪文, 王建立, 等.地基大口径红外光电设备快速辐射定标[J].光学学报, 2015, 35(3): 0301003. http://www.opticsjournal.net/upload/post/articles/0301003.pdf

    Liu J C, Li H W, Wang J L, et al. Fast radiance calibration for ground-based large-aperture infrared opto-electric equipment[J]. Acta Optica Sinica, 2015, 35(3): 0301003. http://www.opticsjournal.net/upload/post/articles/0301003.pdf

    [5]

    王建军, 黄晨, 高昕, 等.红外辐射测量系统内外标定技术[J].红外与激光工程, 2014, 43(6): 1767–1771. http://doi.wanfangdata.com.cn/10.3969/j.issn.1007-2276.2014.06.013

    Wang J J, Huang C, Gao X, et al. Inner and outer calibration technology of infrared radiation measurement[J]. Infrared and Laser Engineering, 2014, 43(6): 1767–1771. http://doi.wanfangdata.com.cn/10.3969/j.issn.1007-2276.2014.06.013

    [6]

    余毅, 王旻, 常松涛, 等.根据环境温度进行红外成像系统漂移补偿[J].光学学报, 2014, 34(10): 1004002. http://www.opticsjournal.net/abstract.htm?aid=OJ111109000101B9EbHd

    Yu Y, Wang M, Chang S T, et al. Drift compensation of infrared imaging system using ambient temperature[J]. Acta Optica Sinica, 2014, 34(10): 1004002. http://www.opticsjournal.net/abstract.htm?aid=OJ111109000101B9EbHd

    [7]

    孙志远, 朱玮, 乔彦峰.红外测温过程中灰度值漂移的修正[J].中国光学与应用光学, 2010, 3(4): 391–396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxyyygxwz201004014

    Sun Z Y, Zhu W, Qiao Y F. Amendment of gray drift in infrared temperature measurement[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(4): 391–396. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggxyyygxwz201004014

    [8]

    孙志远, 朱玮, 乔彦峰, 等.红外辐射特性测量中环境影响的修正研究[J].激光与红外, 2010, 40(2): 162–165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201002012

    Sun Z Y, Zhu W, Qiao Y F, et al. Atmosphere amending research in infrared radiation characteristic measurement[J]. Laser & Infrared, 2010, 40(2): 162–165. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201002012

    [9]

    孙志远, 王晶, 乔彦峰.环境对中波红外探测器测温精度的影响[J].中国光学与应用光学, 2010, 3(6): 659–664. http://www.irgrid.ac.cn/handle/1471x/498280?mode=full&submit_simple=Show+full+item+record

    Sun Z Y, Wang J, Qiao Y F. Influence of environment on temperature measurement precision based on middle-wave IRFPA[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(6): 659–664. http://www.irgrid.ac.cn/handle/1471x/498280?mode=full&submit_simple=Show+full+item+record

    [10]

    孙志远, 常松涛, 朱玮, 等.应用内外定标修正实现红外测量系统辐射定标[J].光学精密工程, 2015, 23(2): 356–362. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201502006

    Sun Z Y, Chang S T, Zhu W, et al. Radiation calibration of infrared system by amendment of inner and outer calibrations[J]. Optics and Precision Engineering, 2015, 23(2): 356–362. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201502006

  • 加载中

(6)

(1)

计量
  • 文章访问数:  7285
  • PDF下载数:  2711
  • 施引文献:  0
出版历程
收稿日期:  2017-10-10
修回日期:  2018-01-23
刊出日期:  2018-04-01

目录

/

返回文章
返回