Bao Hua, Rao Changhui, Tian Yu, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 170730. doi: 10.12086/oee.2018.170730
Citation: Bao Hua, Rao Changhui, Tian Yu, et al. Research progress on adaptive optical image post reconstruction[J]. Opto-Electronic Engineering, 2018, 45(3): 170730. doi: 10.12086/oee.2018.170730

Research progress on adaptive optical image post reconstruction

    Fund Project: Supported by the National Science Foundation of China (11178004, 11727805)
More Information
  • In order to further improve the imaging quality of the adaptive optical system, the widely used image reconstruction technologies at present, including blind deconvolution, phase diversity and speckle imaging, are extensively researched in this paper. The characteristics, application scenes and processing objects of each technology are analyzed in detail and the algorithms are improved reasonably combined with the characteristics of the adaptive optical imaging system. Experimental results of in vivo human retinal cell image and sunspots image, proved that the improved technologies can effectively increase the quality and resolution of adaptive optical images, and satisfy the needs of adaptive optics system for image post-processing.
  • 加载中
  • [1] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229-236.

    Google Scholar

    [2] 姜文汉. 高分辨率自适应望远镜[C]//国家高技术计划信息领域信息获取与处理技术主体十周年汇报—自适应光学望远镜技术, 1996: 1-14.

    Google Scholar

    [3] 姜文汉, 张雨东, 饶长辉, 等.中国科学院光电技术研究所的自适应光学研究进展[J].光学学报, 2011, 31(9): 0900106.

    Google Scholar

    Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of institute of optics and electronics, Chinese academy of science[J]. Acta Optica Sinica, 2011, 31(9): 0900106.

    Google Scholar

    [4] Van Noort M, Van Der Voort L R, Löfdahl M G. Solar image restoration by use of multi-frame blind de-convolution with multiple objects and phase diversity[J]. Solar Physics, 2005, 228(1-2): 191-215. doi: 10.1007/s11207-005-5782-z

    CrossRef Google Scholar

    [5] Ayers G R, Dainty J C. Iterative blind deconvolution method and its applications[J]. Optics Letters, 1988, 13(7): 547-549. doi: 10.1364/OL.13.000547

    CrossRef Google Scholar

    [6] 田雨, 饶长辉, 张学军.波前解卷积方法中的高频噪声抑制[J].强激光与粒子束, 2007, 19(4): 593-597.

    Google Scholar

    Tian Y, Rao C H, Zhang X J. High frequency noise constraint in deconvolution from wavefront sensing[J]. High Power Laser and Particle Beams, 2007, 19(4): 593-597.

    Google Scholar

    [7] Gonzalez R C, Woods R E. Digital image processing[M]. Reading, MA: Addison-Wesley, 1992.

    Google Scholar

    [8] Kundur D, Hatzinakos D. Blind image deconvolution[J]. IEEE Signal Processing Magazine, 1996, 13(3): 43-64. doi: 10.1109/79.489268

    CrossRef Google Scholar

    [9] Campisi P, Egiazarian K. Blind image deconvolution: theory and applications[M]. Boca Raton: CRC Press, 2016.

    Google Scholar

    [10] Levin A, Weiss Y, Durand F, et al. Understanding and evaluating blind deconvolution algorithms[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 1964-1971.https://www.computer.org/csdl/proceedings/cvpr/2009/3992/00/05206815-abs.html

    Google Scholar

    [11] Perrone D, Favaro P. A clearer picture of total variation blind deconvolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(6): 1041-1055. doi: 10.1109/TPAMI.2015.2477819

    CrossRef Google Scholar

    [12] Levin A, Weiss Y, Durand F, et al. Efficient marginal likelihood optimization in blind deconvolution[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition, 2011: 2657-2664.https://www.computer.org/csdl/proceedings/cvpr/2011/0394/00/05995308-abs.html

    Google Scholar

    [13] Molina R, Mateos J, Katsaggelos A K. Blind deconvolution using a variational approach to parameter, image, and blur estimation[J]. IEEE Transactions on Image Processing, 2006, 15(12): 3715-3727. doi: 10.1109/TIP.2006.881972

    CrossRef Google Scholar

    [14] Lofdahl M G. Multi-frame blind deconvolution with linear equality constraints[J]. Proceedings of SPIE, 2002, 4792: 146-155. doi: 10.1117/12.451791

    CrossRef Google Scholar

    [15] Tian Y, Rao C H, Wei K. Adaptive optics image restoration based on frame selection and multi-frame blind deconvolution[J]. Chinese Astronomy and Astrophysics, 2009, 33(2): 223-230. doi: 10.1016/j.chinastron.2009.03.004

    CrossRef Google Scholar

    [16] Tian Y, Rao C H, Rao X J, et al. Hybrid deconvolution of adaptive optics retinal images from wavefront sensing[J]. Chinese Physics Letters, 2008, 25(1): 105-107. doi: 10.1088/0256-307X/25/1/029

    CrossRef Google Scholar

    [17] 李昊, 卢婧, 史国华, 等.视网膜图像的解卷积方法研究[J].光电子·激光, 2010, 21(10): 1570-1573.

    Google Scholar

    Li H, Lu J, Shi G H, et al. Deconvolution algorithm of retinal images[J]. Journal of Optoelectronics·Laser, 2010, 21(10): 1570-1573.

    Google Scholar

    [18] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5): 829-832.

    Google Scholar

    [19] 王欣, 赵达尊, 毛珩, 等.相位变更方法发展简述[J].光学技术, 2009, 35(3): 454-460.

    Google Scholar

    Wang X, Zhao D Z, Mao H, et al. The development of phase diversity[J]. Optical Technique, 2009, 35(3): 454-460.

    Google Scholar

    [20] Löfdahl M G, Scharmer G B. Wavefront sensing and image restoration from focused and defocused solar images[J]. Astronomy and Astrophysics, 1994, 107: 243-264.

    Google Scholar

    [21] Paxman R G, Schulz T J, Fienup J R. Phase-diverse speckle interferometry[C]// Topical Meeting on Signal Recovery and Synthesis Ⅳ, Technical Digest Series 11. Washington DC: Optical Society of America.

    Google Scholar

    [22] Seldin J H, Paxman R G. Phase-diverse speckle reconstruction of solar data[J]. Proceedings of SPIE, 1994, 2302: 268-280. doi: 10.1117/12.188044

    CrossRef Google Scholar

    [23] Paxman R G, Seldin J H, Löfdahl M G, et al. Evaluation of phase-diversity techniques for solar-image restoration[J]. Astrophysical Journal, 1996, 466: 1087-1099. doi: 10.1086/177578

    CrossRef Google Scholar

    [24] Vogel C R, Chan T F, Plemmons R J. Fast algorithms for phase-diversity-based blind deconvolution[J]. Proceedings of SPIE, 1998, 3353: 994 -1005. doi: 10.1117/12.321720

    CrossRef Google Scholar

    [25] Löfdahl M G, Scharmer G B. Diverse phase speckle inversion applied to data from the Swedish 1-meter solar telescope[J]. Proceedings of SPIE, 2003, 4853: 567-575. doi: 10.1117/12.460285

    CrossRef Google Scholar

    [26] Kendrick R L, Acton D S, Duncan A L. Phase-diversity wave-front sensor for imaging systems[J]. Applied Optics, 1994, 33(27): 6533-6546. doi: 10.1364/AO.33.006533

    CrossRef Google Scholar

    [27] Löfdahl M G, Kendrick R L, Harwit A, et al. Phase diversity experiment to measure piston misalignment on the segmented primary mirror of the Keck Ⅱ telescope[J]. Proceedings of SPIE, 1998, 3356: 1190-1201. doi: 10.1117/12.324519

    CrossRef Google Scholar

    [28] 于学刚, 刘忠, 金振宇, 等.波前相位差法探测器的设计[J].天文研究与技术, 2010, 7(1): 55-59.

    Google Scholar

    Yu X G, Liu Z, Jin Z Y, et al. Design of a phase diversity wavefront sensor[J]. Astronomical Research & Technology, 2010, 7(1): 55-59.

    Google Scholar

    [29] 李斐, 饶长辉.高精度相位差波前探测器的数值仿真和实验研究[J].光学学报, 2011, 31(8): 0804001.

    Google Scholar

    Li F, Rao C H. Study on phase diversity wavefront sensor[J]. Acta Optica Sinica, 2011, 31(8): 0804001.

    Google Scholar

    [30] 李斐, 饶长辉.相位差法波前传感系统自身误差的分析及消除方法[J].强激光与粒子束, 2011, 23(3): 599-605.

    Google Scholar

    Li F, Rao C H. Analysis and elimination of errors in phase diversity wavefront sensing system[J]. High Power Laser and Particle Beams, 2011, 23(3): 599-605.

    Google Scholar

    [31] 李斐, 饶长辉.基于相位差混合处理方法的高分辨力成像技术[J].物理学报, 2012, 61(2): 029502.

    Google Scholar

    Li F, Rao C H. High resolution imaging technique based on phase diversity hybrid method[J]. Acta Physica Sinica, 2012, 61(2): 029502.

    Google Scholar

    [32] 王斌, 汪宗洋, 王建立, 等.双相机相位差异散斑成像技术[J].光学精密工程, 2011, 19(6): 1384-1390.

    Google Scholar

    Wang B, Wang Z Y, Wang J L, et al. Phase-diverse speckle imaging with two cameras[J]. Optics and Precision Engineering, 2011, 19(6): 1384-1390.

    Google Scholar

    [33] 王建立, 汪宗洋, 王斌, 等.相位差异散斑法图像复原技术[J].光学精密工程, 2011, 19(5): 1165-1170.

    Google Scholar

    Wang J L, Wang Z Y, Wang B, et al. Image restoration by phase-diverse speckle[J], Optics and Precision Engineering, 2011, 19(5): 1165-1170.

    Google Scholar

    [34] Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images[J]. Astronomy and Astrophysics, 1970, 6: 85-87.

    Google Scholar

    [35] Knox K T, Thompson B J. New methods of processing speckle pattern star images[J]. The Astrophysical Journal, 1973, 182: L133. doi: 10.1086/181236

    CrossRef Google Scholar

    [36] Weigelt G, Wirnitzer B. Image reconstruction by the speckle-masking method[J]. Optics Letters, 1983, 8(7): 389-391. doi: 10.1364/OL.8.000389

    CrossRef Google Scholar

    [37] Weigelt G P. Modified astronomical speckle interferometry "speckle masking"[J]. Optics Communications, 1977, 21(1): 55-59. doi: 10.1016/0030-4018(77)90077-3

    CrossRef Google Scholar

    [38] Von der Lühe O. Speckle imaging of solar small scale structure. Ⅰ-Methods[J]. Astronomy and Astrophysics, 1993, 268(1): 374-390.

    Google Scholar

    [39] Denker C, Mascarinas D, Xu Y, et al. High-spatial-resolution imaging combining high-order adaptive optics, frame selection, and speckle masking reconstruction[J]. Solar Physics, 2005, 227(2): 217-230. doi: 10.1007/s11207-005-1108-4

    CrossRef Google Scholar

    [40] Denker C, Deng N, Rimmele T R, et al. Field-dependent adaptive optics correction derived with the spectral ratio technique[J]. Solar Physics, 2007, 241(2): 411-426. doi: 10.1007/s11207-007-0315-6

    CrossRef Google Scholar

    [41] Wöger F, von der Lühe O. Field dependent amplitude calibration of adaptive optics supported solar speckle imaging[J]. Applied Optics, 2007, 46(33): 8015-8026. doi: 10.1364/AO.46.008015

    CrossRef Google Scholar

    [42] 钟立波, 田雨, 饶长辉.静态像差对交叉谱相位复原精度的影响及补偿方法[J].光学学报, 2014, 34(7): 0701002.

    Google Scholar

    Zhong L B, Tian Y, Rao C H. Influence of static aberrations on the accuracy of cross spectrum phase reconstruction and the compensated method[J]. Acta Optica Sinica, 2014, 34(7): 0701002.

    Google Scholar

    [43] Zhong L B, Tian Y, Rao C H. Speckle image reconstruction of the adaptive optics solar images[J]. Optics Express, 2014, 22(23): 29249-29259. doi: 10.1364/OE.22.029249

    CrossRef Google Scholar

    [44] Zhong L B, Tian Y, Rao C H. Speckle transfer function for partial correction adaptive optics image reconstruction[J]. Optics Letters, 2014, 39(15): 4599-4602. doi: 10.1364/OL.39.004599

    CrossRef Google Scholar

    [45] Krishnan D, Bruna J, Fergus R. Blind deconvolution with non-local sparsity reweighting[J]. arXiv: 1311. 4029, 2013.http://www.oalib.com/paper/4041311

    Google Scholar

    [46] Yan R M, Shao L. Blind image blur estimation via deep learning[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1910-1921.

    Google Scholar

  • Overview: The light wave from target is influenced by outside factors such as the atmosphere turbulence, the aberration of telescope and so on. To overcome these problems, the adaptive optical (AO) technique was proposed since 1950s. However, restricted by the accuracy of wave-front sensor, the limited correction of deformable mirror and the limited bandwidth of close-loop, wave-front distortion can only be corrected by AO system partially. Therefore, the AO imaging results are still affected by the residual wave-front aberration. To further improve the quality and resolution of AO images, the image post-processing technique is required.

    As we know, the AO technique can effectively reduce the wave-front distortion, so as to effectively reduce the range of solutions of image restoration. Furthermore, the residual wave-front aberration is important prior information to guide the optimal iteration process. In addition, the image post-processing will be more robust as the AO images have higher peak-to-signal ratio (PSNR). However, on the other side, the AO technique will change the model of atmosphere turbulence and the statistical distribution of residual aberrations. Therefore, image reconstruction algorithms must take the characteristics of AO system into consideration.

    Currently, the major image processing schemes include blind deconvolution (BD), phase diversity (PD) and speckle imaging technologies (SI). BD is one of the most flexible technologies without special requirements for imaging system and processing object, but BD needs prior knowledge about PSF and support region of real targets to restrict the solving procedure. PD is an aberration detection based on image restorion technology, by using a few groups of images acquired from the same object with different optical channels simultaneously. The main challenge of PD is that this technology requires an extra set of imaging equipment, and the algorithm is sensitive to parameters. SI technology uses the statistical characteristics of atmosphere turbulence to reconstruct the phase and amplitude of the imaging target respectively, which has widely been applied to high resolution solar image reconstruction. However, as SI is based on the statistical information of atmosphere turbulence, it needs hundreds of short-exposure images to reconstruct a single image; therefore the imaged object cannot have obviously changing in the imaging procedure.

    In order to get acceptable reconstructed AO images, the major three image processing technologies mentioned above have been deeply discussed in this paper, and relevant improvements are proposed to suit AO system characteristics. The high quality processing results of human retinal images and the large field of view of sunspots images have proved our methods are effective and reliable.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(10852) PDF downloads(4062) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint