太阳自适应光学技术进展

饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733
引用本文: 饶长辉, 朱磊, 张兰强, 等. 太阳自适应光学技术进展[J]. 光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733
Rao Changhui, Zhu Lei, Zhang Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733
Citation: Rao Changhui, Zhu Lei, Zhang Lanqiang, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

太阳自适应光学技术进展

  • 基金项目:
    国家自然科学基金资助项目(11178004,11727805)
详细信息
    作者简介:
    通讯作者: 朱磊(1980-),男,博士,研究员,主要从事太阳自适应光学技术研究和系统研制工作。E-mail:zhulei_cas@aliyun.com
  • 中图分类号: P182

Development of solar adaptive optics

  • Fund Project: Supported by National Natural Science Foundation of China (11178004, 11727805)
More Information
  • 对太阳大气进行大视场高分辨力光学成像观测是开展太阳物理、空间天气等基础与应用研究的重要前提。对于地基太阳望远镜而言,为了消除地球大气湍流对光学系统的影响,自适应光学是高分辨力成像观测必备的技术手段,与此同时,为了突破大气非等晕性对传统自适应光学校正视场的限制,近年来多层共轭自适应光学技术等大视场自适应光学得到极大发展。本文首先梳理国外太阳自适应光学系统研制情况,重点介绍国内太阳自适应光学技术发展及应用情况,并进一步介绍了后续大视场太阳自适应光学技术发展情况以及目前所取得的成果。

  • Overview: High spatial resolution imaging of the Sun is severely limited by the Earth’s atmosphere turbulence for ground-based solar telescope. Solar adaptive optics (AO) aims at the problems and has revitalized ground-based solar astronomy at existing telescopes. Meanwhile, multi-conjugate adaptive optics (MCAO) and ground layer adaptive optics (GLAO) have been proved to overcome the anisoplanatism and obtain the high resolution images with a large field of view in solar observation by compensating for the turbulence with several deformable mirrors conjugated to different heights. Over the three decades AO systems have been deployed at major ground-based solar telescopes and become an indispensable tool for obtaining high-resolution solar images today. Now the AO308 at the 1.6 m Goode Solar Telescope (GST) represents the highest level of solar AO, which consists of a 308-subaperture correlating Shack-Hartmann wavefront sensor, a 357-element deformable mirror and a high-order wavefront correction controller. The first solar MCAO system Clear which is built at the GST saw the first light in 2017. In China, the development of solar AO dates back to 2002, in which the tip/tilt correction system was developed by Institute of Optics and Electronics, Chinese Academy of Sciences, and built at the 43-cm Solar Telescope of Nanjing University. After that, a 37-element AO experiment system was designed for the 26-cm solar fine structure telescope at Yunnan Astronomical Observatory. During 2012 to 2015, based on 1-m New Vacuum Solar Telescope (NVST) at Fuxian Solar Observatory, two generation solar AO systems were successfully developed. Meanwhile, MCAO and GLAO were under research to widen the correction field of view, a GLAO and MCAO prototype system were developed and built for the NVST. In this review, we give some summarization of the development of solar adaptive abroad, and emphatically introduce several adaptive optics systems in China and the progress of large FoV adaptive optics.

  • 加载中
  • 图 1  (a) 传统自适应光学,(b)地表层自适应光学以及(c)多层共轭自适应光学基本概念和校正效果

    Figure 1.  Principle diagram and the correction results of (a) classical adaptive optics, (b) ground layer adative optics and (c) multi-conjugate adaptive optics

    图 2  基于美国GST上太阳MCAO系统“Clear”获取的(a) MCAO,(b) GLAO及(c) CAO系统闭环的太阳图像[10]

    Figure 2.  The Sun observed in a field of view of 53″ × 53″ with (a) MCAO, (b) GLAO, and (c) CAO correction with Clear on the NST[10]

    图 3  中国科学院光电技术研究所太阳自适应光学发展历程

    Figure 3.  The development of solar adaptive optics in Institute of Optics and Electronics, CAS

    图 4  26 cm太阳望远镜AO(a)校正前和(b)校正后太阳表面图像观测结果[17]

    Figure 4.  Solar sunspot images (a) without and (b) with the AO experiment system[17]

    图 5  1 m NVST 37单元低阶AO系统光路图

    Figure 5.  Optical layout of the 37-element solar AO system for 1 m NVST

    图 6  151单元高阶AO系统与1 m新真空望远镜对接实物图

    Figure 6.  The photo of 151-element solar AO system

    图 7  151单元高阶AO系统获得的太阳黑子短曝光开闭环图像(705.7 nm@0.6 nm)。(a)太阳黑子开环图像;(b)太阳黑子闭环图像

    Figure 7.  The short-exposure open-loop and closed-loop images of sunspot obtained by 151-element solar AO system (705.7 nm@0.6 nm). (a) Solar sunspot images without AO; (b) Solar sunspot images with AO

    图 8  太阳多波段层析成像系统采集的151单元太阳AO校正前后太阳观测结果。图中展示了6个通道的成像结果,(a) G band;(b) Hα line;(c) TiO band;(d) Ca Ⅱ IR line;(e) He Ⅰ line;(f) Fe Ⅰ line [21]

    Figure 8.  Comparison of the observed results between without SAO and with speckle reconstruction of SAO image. These images were taken from the six imaging channels. (a) G band; (b) Hα line; (c) TiO band; (d) Ca Ⅱ IR line; (e) He Ⅰ line; (f) Fe Ⅰ line[21]

    图 9  活动区NOAA 12599的GLAO (a)开环和(b)闭环图像(705.7@0.6 nm)

    Figure 9.  Sunspot (a) without AO and (b) with GLAO closed loop for active area NOAA 12599 (705.7 at 0.6 nm)

    图 10  太阳活动区NOAA 12683的(a)开环、(b) GLAO闭环以及(c) MCAO闭环短曝光图像(705.7@0.6 nm)

    Figure 10.  The short exposure sunspots images of (a) the uncorrected, (b) GLAO and (c) MCAO-corrected for active area NOAA 12683 (705.7@0.6 nm)

    表 1  国外曾经使用过以及正在使用的太阳AO系统

    Table 1.  Developed/developing solar AO systems

    望远镜/自适应光学 子孔径数 驱动器数 采样频率/kHz 硬件架构 首次观测/年
    76 cm DST/Lockheed 19 57 2 Analog circuits 1986
    76 cm DST/LOAO 24 97 <1.6 24 DSPs 1998
    48 cm SVST 19 19 0.955 566 MHz alpha 1999
    76 cm DST/HOAO 76 97 2.5 40 DSPs 2002
    70 cm VTT/KAOS 36 35 0.955 8×900 MHz Sun 2002
    1.5 m McMath-Pierce 120~200 37 0.955 1 GHz Pentium Ⅲ 2002
    97 cm SST 37 37 0.955 1.4 GHz Athlon 2003
    65 cm BBSO/HOAO 76 97 2.5 40 DSPs 2004
    1.6 m NST/HOAO 76 97 2.5 40 DSPs 2010
    1.6 m NST/HOAO 308 349 2 DSP clusters 2013
    1.5 m GREGOR/HOAO 156 256 2 Multiple-CPU SMP 2012
    4 m ATST/HOAO 1232 1313 - DSP clusters -
    下载: 导出CSV

    表 2  NVST上两套自适应光学系统主要技术参数

    Table 2.  The main parameters of the two generation solar adaptive optic systems

    系统参数 一代37单元低阶AO系统 二代151单元高阶AO系统
    校正阶数 20 65
    波前探测子孔径数 30 102
    探测器视场 12"×10" 24"×20"
    探测像素分辨率/" 0.5 1
    探测相机 MC1362 Phantom V311
    探测帧频/Hz 2100 3500
    校正器单元数 37 151
    波前探测算法 Absolute difference Absolute difference square
    处理机架构 Xilinx FPGA V6 + TI DSP C6747 Xilinx FPGA K7 + TI DSP C6678
    下载: 导出CSV
  • [1]

    Rimmele T R. Solar adaptive optics[J]. Proceedings of SPIE, 2000, 4007: 218-232. doi: 10.1117/12.390301

    [2]

    姜文汉.自适应光学技术[J].自然杂志, 2006, 28(1): 7-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zrzz200601002&dbname=CJFD&dbcode=CJFQ

    Jiang W H. Adaptive optical technology[J]. Chinese Journal of Nature, 2006, 28(1): 7-13. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zrzz200601002&dbname=CJFD&dbcode=CJFQ

    [3]

    Esposito S. Introduction to multi-conjugate adaptive optics systems[J]. Comptes Rendus Physique, 2005, 6(10): 1039-1048. doi: 10.1016/j.crhy.2005.11.016

    [4]

    Hubin N, Arsenault R, Conzelmann R, et al. Ground layer adaptive optics[J]. Comptes Rendus Physique, 2005, 6(10): 1099-1109. doi: 10.1016/j.crhy.2005.10.005

    [5]

    Hardy J W. Solar imaging experiment: final report[R]. Lexington, MA: Air Force Geophysics Laboratory, 1980.

    [6]

    Acton D S, Smithson R C. Solar imaging with a segmented adaptive mirror[J]. Applied Optics, 1992, 31(16): 3161-3169. doi: 10.1364/AO.31.003161

    [7]

    Berkefeld T, Schmidt D, Soltau D, et al. The GREGOR adaptive optics system[J]. Astronomische Nachrichten, 2012, 333(9): 863-871. doi: 10.1002/asna.v333.9

    [8]

    Dirk S, Thomas B, Frank H, et al. GREGOR MCAO looking at the Sun[J]. Proceedings of SPIE, 2000, 4007: 218. doi: 10.1117/12.390301

    [9]

    Shumko S, Gorceix N, Choi S, et al. AO-308: the high-order adaptive optics system at Big Bear Solar Observatory[J]. Proceedings of SPIE, 2014, 9148: 914835. doi: 10.1117/12.2056731

    [10]

    Schmidt D, Berkefeld T, Heidecke F, et al. GREGOR MCAO looking at the Sun[J]. Proceedings of SPIE, 2014: 9148: 91481T. http://www.spie.org/Publications/Proceedings/Paper/10.1117/12.2055154

    [11]

    Schmidt D, Gorceix N, Goode P R, et al. Clear widens the field for observations of the Sun with multi-conjugate adaptive optics[J]. Astronomy & Astrophysics, 2017, 597: L8. https://www.researchgate.net/publication/312192517_Clear_widens_the_field_for_observations_of_the_Sun_with_multi-conjugate_adaptive_optics

    [12]

    Kong L, Zhang L Q, Zhu L, et al. Prototype of solar ground layer adaptive optics at the 1 m New Vacuum Solar Telescope[J]. Chinese Optics Letters, 2016, 14(10): 100102. doi: 10.3788/COL

    [13]

    饶长辉, 姜文汉, 凌宁, 等.太阳表面米粒结构观测对比度分析[J].天文学报, 2001, 42(2): 134-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=twxb200102004

    Rao C H, Jiang W H, Ling N, et al. Analysis of the observed R. M. S. contrast in solar granulation[J]. Acta Astronomica Sinica, 2001, 42(2): 134-139. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=twxb200102004

    [14]

    饶长辉, 张学军, 姜文汉.太阳米粒结构相关哈特曼-夏克波前传感模拟研究[J].光学学报, 2002, 22(3): 285-289. https://www.wenkuxiazai.com/doc/e5d1dcec561252d380eb6ebb.html

    Rao C H, Zhang X J, Jiang W H. Simulation study on correlating Hartmann-Shack Wavefront sensor for solar granulation[J]. Acta Optica Sinica, 2002, 22(3): 285-289. https://www.wenkuxiazai.com/doc/e5d1dcec561252d380eb6ebb.html

    [15]

    Rao C H, Jiang W H, Ling N. Adaptive-optics compensation by distributed beacons for non-Kolmogorov turbulence[J]. Applied Optics, 2001, 40(21): 3441-3449. doi: 10.1364/AO.40.003441

    [16]

    Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Chinese Journal of Astronomy and Astrophysics, 2003, 3(6): 576-586. doi: 10.1088/1009-9271/3/6/576

    [17]

    Rao C H, Zhu L, Rao X J, et al. Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory[J]. Applied Optics, 2010, 49(31): G129-G135. doi: 10.1364/AO.49.00G129

    [18]

    Rao C H, Zhu L, Rao X J, et al. First generation solar adaptive optics system for 1-m New Vacuum Solar Telescope at Fuxian Solar Observatory[J]. Research in Astronomy and Astrophysics, 2016, 16(2): 023. http://www.opticsinfobase.org/abstract.cfm?uri=col-13-12-120101

    [19]

    Rao C H, Zhu L, Rao X J, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory[J]. The Astrophysical Journal, 2016, 833(2): 210. doi: 10.3847/1538-4357/833/2/210

    [20]

    Rao C H, Zhu L, Gu N T, et al. A high-resolution multi-wavelength simultaneous imaging system with solar adaptive optics[J]. The Astronomical Journal, 2017, 154(4): 143. doi: 10.3847/1538-3881/aa84b4

    [21]

    Kong L, Zhu L, Zhang L Q, et al. Real-time controller based on FPGA and DSP for solar ground layer adaptive optics prototype system at 1-m NVST[J]. IEEE Photonics Journal, 2017, 9(2): 7801411. https://www.researchgate.net/publication/275223545_Solar_Ground-Layer_Adaptive_Optics

    [22]

    张兰强, 顾乃庭, 饶长辉.大气湍流三维波前探测模式层析算法分析[J].物理学报, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501

    Zhang L Q, Gu N T, Rao C H. Analysis of modal tomography for three-dimensional wavefront sensing of atmosphere turbulence[J]. Acta Physica Sinica, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501

    [23]

    Zhang L Q, Guo Y M, Rao C H. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction[J]. Optics Express, 2017, 25(4): 4356-4367. doi: 10.1364/OE.25.004356

  • 加载中

(10)

(2)

计量
  • 文章访问数:  12352
  • PDF下载数:  4760
  • 施引文献:  0
出版历程
收稿日期:  2017-12-28
修回日期:  2018-02-11
刊出日期:  2018-03-15

目录

/

返回文章
返回