自适应光学发展综述

姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489
引用本文: 姜文汉. 自适应光学发展综述[J]. 光电工程, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489
Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489
Citation: Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

自适应光学发展综述

详细信息
    作者简介:
    通讯作者: 姜文汉, E-mail: adopse@ioe.ac.cn
  • 中图分类号: O439

Overview of adaptive optics development

More Information
  • 自适应光学(AO)是校正动态光学波前误差的技术。本文概述了近50年来AO的发展历程,包括发展初期,“星球大战”期间美国的发展,以及在地基高分辨力成像望远镜,激光系统(特别是惯性约束聚变)以及眼科等方面的应用,此外还给出AO的发展趋势。通过引用每一项技术发展,首创者的首篇文献,给出了比较清晰的发展脉络。

  • Overview: Adaptive optics (AO) is the technology for correcting the dynamic optical wavefront errors. This article reviews the development process of AO in recent 50 years. Giving a development skeleton of AO is the purpose of this paper. The original ideas of Adaptive Optics were proposed by American astronomer H. W. Babcock in 1953, and Soviet astronomer V. P Linnik in 1957. At that time, there were no technical basics for realizing the proposes. Until late of the 60th decade of 20th century ARPA of US initiated to support fundamental researches of AO, the first papers of AO were published in 1997. In the period of Strategy Defense Initiatives(SDI),since 1985 AO had its booming period, many innovations appeared, including: the theory of atmosphere turbulence and its correction, high resolution imaging of satellites, laser guide star, laser propagation through atmosphere and thermal blooming. From the 90th decade of 20th century, The applications of AO in different areas were expanded quickly. High resolution imaging of astronomical objects is firstly realized by the Come-On project of European Southern Observatory (ESO). Now AO becomes the standard configuration of large astronomical telescopes. Three giant optical telescopes of 30~50 meters are being constructed. In each of these projects, sophisticated AO systems with large scale wavefront correctors, wavefront sensors and constellation of laser guide stars are being developed. Ground based imaging of satellites is another important application of AO. The Air Force of US constructed two AO telescope with 3.6 meters mirror. In 1986 the first solar AO system was used for high resolution observation of the surface structure of the Sun. Correction of wavefront errors in large laser system such as Inertial Confinement Fusion (ICF) is another important application of AO. The first AO system used in ICF was realized in China in 1985. Since then, many AO systems were developed in ICF facilities in China and LLNL of US. The first AO system for civilian use was the retinal imaging of human eye in 1997 by Rochester University. The developing trends of AO are briefly reviewed in this paper, including expanding the correction field of AO system by Multi-layer Conjugation AO (MCAO) using constellation of laser guide stars, extreme AO for elimination the halo around the core of the corrected point spread function (PSF), miniaturization of AO system by using miniaturizing the wavefront correctors and sensors. In every section of the paper, the developments of AO in China, especially in Institute of Optics and Electronics (IOE), are also included. For each technical innovation, the first published paper of the innovator is cited as far as possible.

  • 加载中
  • 图 1  Babcock设想的Seeing校正系统。望远镜物镜的刀口像成像在超正析管上,由此管探测的图像信号转化为投射到反射镜油膜上的电荷,以此来改变波前相位,实现波前反馈[2]

    Figure 1.  The seeing correction system proposed by Babcock, the knife edge image of telescope's pupil is detected by the orthicon, the image is converted to correction signal which is projected by an electron beam at the oil film on the Eidophor, changing the wavefront phase, thus forms a feedback close loop[2]

    图 2  Linnik设想的方案,次镜N由多个子镜组成,由驱动器调节光程,入射光经干涉仪I形成干涉条纹由探测器P探测,P的分区与次镜N相对应[3]

    Figure 2.  The proposal of Linnik. The secondary mirror N consists of several sub-mirrors, driven by actuators to change the optical light path, the interferometer I forms fringes of the incident light which are detected by the detector P, the detecting zones of P match with the sub-mirrors of the secondary mirror N[3]

    图 3  补偿成像系统CIS获取的双星和哈勃卫星的AO校正前(a1, b1)和校正后(a2, b2)的图像。(a1, a2)双星(摄于1982年5月18日);(b1, b2)哈勃卫星(摄于1991年7月24日)[5]

    Figure 3.  Uncompensated (a1, b1) and compensated (a2, b2) images of binary stars and Hubble space telescope taken by CIS[5]. (a1, a2) Binary stars (taken on 18th May 1982); (b1, b2) Hubble space telescope (taken on 24th July 1991) [5]

    图 4  美国1972~1993年AO发展历程[19]

    Figure 4.  The AO development course of US in the period of 1972~1993[19]

    图 5  三台超大型望远镜的主镜布局,与之对比也画出篮球场和人体的大小

    Figure 5.  Primary mirrors arrangement of three super large astronomical telescopes, for comparing, the sizes of basketball field and human body are also shown (update from Wikipedea)

    图 6  SOR望远镜对低轨卫星(a)和恒星(b)的跟踪精度[26]

    Figure 6.  Tracking precision of SOR 3.5 m telescope for low orbit satellite (a) and star (b)[26]

    图 7  SOR望远镜对低轨卫星的成像效果。(a)校正前;(b)校正后;(c)校正+图像处理[26]

    Figure 7.  Low orbit satellite Imaging by SOR telescope. (a) Uncompensated; (b) Compensated; (c) Compensated + image processing[26]

    图 8  SOR望远镜对低轨卫星发射激光试验,用AO校正前(右)后(左)卫星上的激光能量分布[26]

    Figure 8.  Laser emitting from SOR telescope, laser distribution on satellite, right: uncompensated; left: compensated[26]

    图 9  151单元高阶AO系统获得的太阳米粒结构的开闭环图像[37]。(a) AO开环(705.7 nm@0.6 nm); (b) AO闭环(705.7 nm@0.6 nm)

    Figure 9.  Sun granules structure imaged by the 151-element AO system[37]. (a) Uncompensated; (b) Compensated

    图 10  人眼视网膜AO成像观察系统拍摄的视网膜图像[45]

    Figure 10.  Retina image taken by the AO retina imaging system[45]

    图 11  AO-CSLO拍摄的人眼视网膜分层高分辨力图像。(a)活体人眼视网膜感光细胞层;(b)毛细血管层;(c)神经纤维层图像[47]

    Figure 11.  Layered high resolution images taken by the AO-CSLO system. (a) Layer of photoreceptors; (b) Layer of blood capillaries; (c) Layer of nerve fibers[47]

    图 12  TMT计划的钠导星星座。(a)根据不同AO系统的星座; (b) 9套钠激光发射系统(IOE提供)

    Figure 12.  The planned constellation of Na beacons for TMT. (a) Constituents of the constellation, different stars used for different AO system; (b) Launching system of 9 Na lasers (provided by IOE)

    图 13  SPHERE系统获得的点扩散函数,对H波段Strehl比从校正前的0.052提高到校正后的0.90[51].

    Figure 13.  Point spread function (PSF) of SPHERE system, the Strehl ratio of H band is increased from 0.052 before correction to 0.90 after correction[51].

    图 14  GPI拍摄的HR4796星周围的尘埃盘,主星形成的中心亮斑被星冕仪遮挡[52]

    Figure 14.  Star HR4796 and surrounding dust disk, the bright image of main star is obscured by coronagrapher[52]

    图 15  IOE研制的几种小型变形镜。(a)分立式驱动器,1085单元间距3 mm;(b) Bimorph变形镜,35单元,间距3 mm;(c) MEMS变形镜140单元,间距0.4 mm。(图均由光电所提供)

    Figure 15.  Miniature deformable mirrors developed by IOE. (a) DM with discrete actuators, 1085 element spacing 3 mm; (b) Bimorph DM, 35 element spacing 3 mm; (c) MEMS DM spacing 0.4 mm (provided by IOE)

    表 1  三台超大型光学天文望远镜的主要参数

    Table 1.  The primary parameters of three extreme large astronomical telescopes

    望远镜名称 口径/m 主镜构成 主镜材料 集光面积/m2
    ELT 39.3 798×1.4 m mULE 978
    TMT 30 738×1.21 m ULE 655
    GMT 24.5 7×8.4 m 硼硅酸盐 368
    下载: 导出CSV

    表 2  TMT的首光AO系统主要参数

    Table 2.  The primary parameters of the first light adaptive optical systems of TMT telescope

    AO系统 变形镜 导星和波前传感器
    NFIRAOS (MCAO) 60×60单元,共轭高度0 km,行程8 mm~10 mm>30×30单元,共轭高度12 km,行程>4 mm 钠导星6~9,功率17 W~25 W,倾斜及聚焦导星1~3,红外自然导星
    MIRAO 单元数15×15到30×30 钠导星1~3,功率17 W~25 W,倾斜及聚焦导星1,红外自然导星
    下载: 导出CSV

    表 3  IOE研制的ICF用的AO系统

    Table 3.  AO systems for ICF developed by IOE

    No. ICF facility Act. of DM Aperture of DM Wavefront sensor Set Year
    1 Shenguang Ⅰ 19 Φ70 mm Hill-climbing 1 1985
    2 “Shenguang Ⅲ” prototype 45 70 mm×70 mm HS 22×22 1 2004
    3 “Shenguang Ⅲ” prototype 45 70 mm×70 mm HS 22×22 8 2007
    4 “Shenguang Ⅱ” petaWatt 55 Φ380 mm HS 22×22 1 2009
    5 “Shenguang Ⅲ” 31 390 mm×390 mm HS 22×22 24 2011
    下载: 导出CSV

    表 4  两套极致AO系统主要参数

    Table 4.  The primary parameters of two extreme adaptive optical systems

    系统 望远镜 口径 变形镜类型及单元数 波前传感器 帧频 波前处理算法 星冕仪
    GPI Gemini 8 m 高价MEMS 1493低阶压电44单元 空间滤波SH沿直径43子孔径 2500 Hz 傅里叶变换和LQG 孔径截趾
    Lyot光阑
    SPHERE VLT 8 m CILAS压电41×41 空间滤波SH 40×40子孔径 1200 Hz 积分和LQG 孔径截趾
    Lyot光阑
    下载: 导出CSV
  • [1]

    牛顿.光学[M].北京:北京大学出版社, 2007.

    [2]

    Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229–236. http://www.jstor.org/stable/40672682

    [3]

    Linnik V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy (in Russian), 1957, 3. English translation, 401-402. CO-16 Satellite Conference on Active and Adaptive Optics, ESO Proc. 48, 1993: 535–538.http://adsabs.harvard.edu/abs/1994ESOC...48..535L

    [4]

    Fried D. L. edited Special issue on adaptive optics[J]. JOSA, 1977, 67(3). http://adsabs.harvard.edu/abs/2017SSPMA..47h4201Z

    [5]

    Hardy J W. Active optics: A new technology for the control of light[J]. Proceedings of the IEEE, 1978, 66(6): 651–697. doi: 10.1109/PROC.1978.10992

    [6]

    Special issue on adaptive optics[J]. Lincoln Laboratory Journal, 1992, 5(1): 170.

    [7]

    Fried D L. Limiting resolution looking down through the atmosphere[J]. Journal of the Optical Society of America, 1966, 56(10): 1380–1384. doi: 10.1364/JOSA.56.001380

    [8]

    Greenwood D P. Bandwidth specification for adaptive optics systems[J]. Journal of the Optical Society of America, 1977, 67(3): 390–393. doi: 10.1364/JOSA.67.000390

    [9]

    Fried D L. Anisoplanatism in adaptive optics[J]. Journal of the Optical Society of America, 1982, 72(1): 52–61. doi: 10.1364/JOSA.72.000052

    [10]

    Murphy D V. Atmospheric-turbulence compensation experiments using cooperative beacons[J]. The Lincoln Laboratory Journal, 1992, 5(1): 25–44. http://adsabs.harvard.edu/abs/1992llabj...5...25m

    [11]

    Murphy D V, Primmerman C A, Zollars B G, et al. Experimental demonstration of atmospheric compensation using multiple synthetic beacons[J]. Optics Letters, 1991, 16(22): 1797–1799. doi: 10.1364/OL.16.001797

    [12]

    Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353(6340): 144–146. doi: 10.1038/353144a0

    [13]

    Primmerman C A, Fouche D G. Thermal-blooming compensation: experimental observations using a deformable-mirror system[J]. Applied Optics, 1976, 15(4): 990–995. doi: 10.1364/AO.15.000990

    [14]

    Schonfeld J F. The theory of compensated laser propagation through strong thermal blooming[J]. The Lincoln Laboratory Journal, 1992, 5(1): 131–150. http://adsabs.harvard.edu/abs/1992LLabJ...5..131S

    [15]

    Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152(2): L29–L31. http://adsabs.harvard.edu/abs/1985a&a...152l..29f

    [16]

    Humphreys R A, Bradley L C, Herrmann J. Sodium-layer synthetic beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1992, 5(1): 45–66. http://adsabs.harvard.edu/abs/1992LLabJ...5...45H

    [17]

    Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369. doi: 10.1364/JOSA.67.000360

    [18]

    Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. Oxford: Oxford University Press, 1998.

    [19]

    Hardy J W. Twenty years of active and adaptive optics[C]// ICO-16 Satellite Conference on Active and Adaptive Optics, 1993, 48: 29–34.http://adsabs.harvard.edu/abs/1994ESOC...48...29H

    [20]

    Kern P, Merkle F, Gaffard J P, et al. Prototype of an adaptive optical system for astronomical observation[J]. Proceedings of SPIE, 1988, 860: 9–16. doi: 10.1117/12.943379

    [21]

    Merkle F, Rousset G, Kern P Y, et al. First diffraction-limited astronomical images with adaptive optics[J]. Proceedings of SPIE, 1990, 1236: 193–203. doi: 10.1117/12.19189

    [22]

    Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223–1225. doi: 10.1364/AO.27.001223

    [23]

    Ellerbroek B, Britton M, Dekany R, et al. Adaptive optics for the thirty meter telescope[J]. Proceedings of SPIE, 2005, 5903: 590304. doi: 10.1117/12.619915

    [24]

    Vernin J, Muñoz-Tuñón C, Sarazin M, et al. European extremely large telescope site characterization Ⅰ: Overview[J]. Publications of the Astronomical Society of the Pacific, 2011, 123(909): 1334–1346. doi: 10.1086/662995

    [25]

    GMT Project. Giant magellan telescope conceptual design review[EB/OL]. http://www.gmto.org, 2006.

    [26]

    Fugate R Q. The starfire optical range 3.5-m adaptive optical telescope[J]. Proceedings of SPIE, 2003, 4837: 934–944. doi: 10.1117/12.457972

    [27]

    Acton D S, Dunn R B. Solar imaging at national solar observatory using a segmented adaptive optics system[J]. Proceedings of SPIE, 1993, 1920: 348–353. doi: 10.1117/12.152680

    [28]

    姜文汉, 张雨东, 饶长辉, 等.中国科学院光电技术研究所的自适应光学研究进展[J].光学学报, 2011, 31(9): 900106. http://www.opticsjournal.net/abstract.htm?id=OJ110829000433IeLhNk

    Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 900106. http://www.opticsjournal.net/abstract.htm?id=OJ110829000433IeLhNk

    [29]

    凌宁.多元整体压电变形反射镜(研究阶段进展报告)[J].光电工程, 1982, 9(6): 43–52. http://www.cnki.com.cn/Article/CJFDTotal-DQCZ197604001.htm

    [30]

    Jiang W H, Li M G, Tang G M, et al. Adaptive optical image compensation experiments on stellar objects[J]. Optical Engineering, 1995, 34(1): 15–21. doi: 10.1117/12.184078

    [31]

    饶长辉, 姜文汉, 张雨东, 等.云南天文台1.2 m望远镜61单元自适应光学系统[J].量子电子学报, 2006, 23(3): 295–302. http://www.doc88.com/p-81160387779.html

    Rao C H, Jiang W H, Zhang Y D, et al. 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295–302. http://www.doc88.com/p-81160387779.html

    [32]

    Rao C H, Wei K, Zhang X J, et al. First observations on the 127-element adaptive optical system for 1.8 m telescope[J]. Proceedings of SPIE, 2008, 7654: 76541H.

    [33]

    Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J]. Proceedings of SPIE, 2012, 8447: 84471R. doi: 10.1117/12.925641

    [34]

    Wei K, Li M, Chen S Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope[J]. Research in Astronomy and Astrophysics, 2016, 16(12): 183. doi: 10.1088/1674-4527/16/12/183

    [35]

    Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(954): 749–756. doi: 10.1086/682672

    [36]

    Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Research in Astronomy and Astrophysics, 2003, 3(6): 576–586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ttwlxb200306013

    [37]

    Rao C H, Zhu L, Rao X J, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory[J]. The Astrophysical Journal, 2016, 833(2): 210. doi: 10.3847/1538-4357/833/2/210

    [38]

    Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21–24. doi: 10.1016/j.optcom.2015.10.033

    [39]

    周仁忠, 阎吉祥.自适应光学理论[M].北京:北京理工大学出版社, 1996.

    [40]

    周仁忠, 阎吉祥, 俞信, 等.自适应光学[M].北京:国防工业出版社, 1996.

    [41]

    Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1989, 965: 266–273. doi: 10.1117/12.948042

    [42]

    Salmon J T, Bliss E S, Byrd J L, et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion[R]. Monterey, CA: Office of Scientific & Technical Information Technical Reports LLNL, 1995.http://digital.library.unt.edu/ark:/67531/metadc625340/

    [43]

    Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892. doi: 10.1364/JOSAA.14.002884

    [44]

    Roorda A, Williams D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520–522. doi: 10.1038/17383

    [45]

    凌宁, 张雨东, 饶学军, 等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报, 2004, 24(9): 1153–1158. https://www.wenkuxiazai.com/doc/898559cda76e58fafbb00355.html

    Ling N, Zhang Y D, Rao X J, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153–1158. https://www.wenkuxiazai.com/doc/898559cda76e58fafbb00355.html

    [46]

    Shi G H, Dai Y, Wang L, et al. Adaptive optics optical coherence tomography for retina imaging[J]. Chinese Optic Letters, 2008, 6(6): 424–425. doi: 10.3788/COL

    [47]

    何毅, 张雨东, 卢婧, 等.超分辨率活体人眼视网膜共焦扫描成像系统[J].物理学报, 2011, 60(3): 034207. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201103045&dbname=CJFD&dbcode=CJFQ

    He Y, Zhang Y D, Lu J, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope[J]. Acta Physica Sinica, 2011, 60(3): 034207. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201103045&dbname=CJFD&dbcode=CJFQ

    [48]

    Liu R, Zhou J W, Zhao H X, et al. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction[J]. Scientific Reports, 2014, 4: 4687. http://europepmc.org/articles/PMC3986699

    [49]

    Macintosh B A, Graham J R, Palmer D W, et al. The Gemini Planet Imager: from science to design to construction[J]. Proceedings of SPIE, 2008, 7015: 701518. doi: 10.1117/12.788083

    [50]

    Beuzit J L, Feldt M, Dohlen K, et al. A 'Planet Finder' instrument for the VLT[J]. Proceedings of the International Astronomical Union, 2005, 1(C200): 317–322. doi: 10.1017/S1743921306009537

    [51]

    Fusco T, Sauvage J F, Petit C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U. doi: 10.1117/12.2055423

    [52]

    Macintosh B, Graham J R, Ingraham P, et al. First light of the Gemini Planet imager[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12661–12666. doi: 10.1073/pnas.1304215111

    [53]

    Ning Y, Jiang W H, Ling N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J]. Optics Express, 2007, 15(19): 12030–12038. doi: 10.1364/OE.15.012030

    [54]

    Bifano T G, Perreault J A, Bierden P A. Micromachined deformable mirror for optical wavefront compensation[J]. Proceedings of SPIE, 2000, 4124: 7–15. doi: 10.1117/12.407508

    [55]

    Rooms F, Camet S, Charton J, et al. A new deformable mirror and experimental setup for free-space optical communication[J]. Proceedings of SPIE, 2009, 7199: 71990. https://www.researchgate.net/publication/253076168_A_new_deformable_mirror_and_experimental_setup_for_free-space_optical_communication

    [56]

    Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517–1524. doi: 10.1364/AO.36.001517

    [57]

    蔡冬梅, 姚军, 姜文汉.液晶空间光调制器用于波前校正的性能[J].光学学报, 2009, 29(2): 285–291. http://www.doc88.com/p-2025237323737.html

    Cai D M, Yao J, Jiang W H. Performance of liquid-crystal spatial light modulator using for wave-front correction[J]. Acta Optica Sinica, 2009, 29(2): 285–291. http://www.doc88.com/p-2025237323737.html

    [58]

    Guo Y M, Zhang A A, Fan X L, et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror[J]. Optics Letters, 2016, 41(24): 5712–5715. doi: 10.1364/OL.41.005712

    [59]

    Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907–909. doi: 10.1364/OL.22.000907

    [60]

    Yang H Z, Li X Y, Jiang W H. High resolution imaging of phase-distorted extended object using SPGD algorithm and deformable mirror[J]. Proceedings of SPIE, 2007, 6834: 683411. doi: 10.1117/12.754993

    [61]

    Booth M J, Neil M A, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5788–5792. doi: 10.1073/pnas.082544799

    [62]

    Wang J X, Bai F Z, Ning Y, et al. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor[J]. Optics Communications, 2012, 285(12): 2814–2820. doi: 10.1016/j.optcom.2012.02.026

    [63]

    Wang S Q, Wei K, Zheng W J, et al. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope[J]. Chinese Optics Letters, 2016, 14(10): 100101. doi: 10.3788/COL

  • 加载中

(15)

(4)

计量
  • 文章访问数:  32130
  • PDF下载数:  8497
  • 施引文献:  0
出版历程
收稿日期:  2017-10-11
修回日期:  2017-12-24
刊出日期:  2018-03-15

目录

/

返回文章
返回