用于光纤多普勒测振的远距离光纤准直系统

刘杰, 王伟, 陈海滨, 等. 用于光纤多普勒测振的远距离光纤准直系统[J]. 光电工程, 2018, 45(2): 170621. doi: 10.12086/oee.2018.170621
引用本文: 刘杰, 王伟, 陈海滨, 等. 用于光纤多普勒测振的远距离光纤准直系统[J]. 光电工程, 2018, 45(2): 170621. doi: 10.12086/oee.2018.170621
Liu Jie, Wang Wei, Chen Haibin, et al. Long-distance optical fiber collimation system for Doppler vibrometer[J]. Opto-Electronic Engineering, 2018, 45(2): 170621. doi: 10.12086/oee.2018.170621
Citation: Liu Jie, Wang Wei, Chen Haibin, et al. Long-distance optical fiber collimation system for Doppler vibrometer[J]. Opto-Electronic Engineering, 2018, 45(2): 170621. doi: 10.12086/oee.2018.170621

用于光纤多普勒测振的远距离光纤准直系统

  • 基金项目:
    国家自然科学基金资助项目(617041);陕西省光电测试与仪器技术重点实验室开放基金资助项目(2015SZSJ-60-3)
详细信息
    作者简介:
    通讯作者: 王伟(1973-),博士,教授,主要从事光电测试与光纤传感的研究。E-mail: wangwei@xatu.edu.cn
  • 中图分类号: TH741

Long-distance optical fiber collimation system for Doppler vibrometer

  • Fund Project: Supported by National Natural Science Foundation of China (617041) and Shaanxi Provincial Key Laboratory of Optoelectronic Testing and Instrumentation Technology Open Fund (2015SZSJ-60-3)
More Information
  • 为了解决光纤多普勒测振仪远距离非接触测量物体振动时,信号偏弱、过零点波形凌乱、难于解调的问题,本文提出了一种新型光纤准直系统。本系统主要采用在小型C-lens光纤准直器后端增加整形系统并借助ZEMAX软件对高斯光束进行准直并优化,通过对光纤准直系统成品进行耦合测试实验,使用C-lens准直器与光纤准直系统进行信号耦合效率的测试对比。实验结果表明:改进后的准直系统能够满足2 m的工作距离,空间返回光耦合效率最大能达到6.3%,极大地提升了多普勒信号的对比度,提高了远距离光纤多普勒测振仪对振动的测量精度。

  • Overview: When an optical Doppler vibrometer with the C-lens or G-lens collimator is used in the long-distance non-contact measurement, there exists problems like weak signal, messy waveform at zero-point and difficulty of demodulation. The rear end of G-lens fiber collimator is plane. The refractive index of the lens along the gradient changes, and the focal length can be achieved by changing the length of the lens. Generally speaking, 0.23 cycle length is used to achieve the collimation effect. The C-lens collimator for our own research and development, with good long-distance performance and low cost, uses a constant refractive index of the thick lens. The rear end of the spherical surface of the front bevel 8°. In order to solve these problems, a new configuration type of collimation system is obtained by adding a beam shaping system at the end of a small C-lens fiber collimator and optimizing the Gaussian beam with ZEMAX software. The 1550 nm invisible laser beam emitted by the fiber collimator is collimated and optimized through the beam shaping system, and irradiate on the surface of the vibrating object at a distance of 2 m. The beam reflected by the vibrating object is coupled back to the C-lens collimator through the beam shaping system to achieve a return light signal with high coupling efficiency.

    The experimental setup is built for the designed collimation system as shown in the figure. At first, the beam emitted by the DFB laser is amplified by the EDFA. The use of the optical circulator effectively enables the return light to be output from the 3-port, which introduces a small amount of insertion loss compared to the conventional 3 dB coupler, thereby significant improvement of the utilization of the light power is emitted by the light source. Then passing through the C-lens collimator and the beam shaping system and incident perpendicularly onto the surface of the objectThe beam is finally reflected by the surface of the object and returned to the system and outputted through the circulator port 3. Lastly, the optical power of the output light can be measured by optical power meter.

    The experimental results provide a reference for improving the contrast of the Doppler interference signals obtained by long-distance non-contact measurement of vibrating objects. The results show that the system can meet the working distance of 2 m and the space coupling efficiency of the return optical transmission reaches 6.3%, it greatly reduce the subsequent data processing work of vibration measurement experiment.

  • 加载中
  • 图 1  光纤准直器结构图

    Figure 1.  Fiber collimator structure

    图 2  高斯光束准直模型

    Figure 2.  Gaussian beam collimation model

    图 3  透镜组参数

    Figure 3.  Lens group parameters

    图 4  光束传输2D图

    Figure 4.  Beam transmission 2D figure

    图 5  像面能量分布图

    Figure 5.  Image surface energy distribution

    图 6  准直透镜的点列图

    Figure 6.  Collimator lens point diagram

    图 7  准直透镜优化后点列图

    Figure 7.  Collimator lens optimization point diagram

    图 8  波前差函数图

    Figure 8.  Wavefront difference function chart

    图 9  耦合效率测试方案图

    Figure 9.  Coupling efficiency test scheme

    图 10  C-lens准直器与新型光纤准直仪的耦合测试曲线图

    Figure 10.  C-lens collimator and new fiber collimator coupling test curve

    表 1  光学设计指标

    Table 1.  Optical design index

    Parameter Value
    Work wavelength/nm 1550±30
    Zoom ratio
    Length range/m 2
    Total length/mm < 90
    下载: 导出CSV

    表 2  EDFA主要参数

    Table 2.  EDFA main parameters

    Parameter Value
    Work wavelength/nm 1530~1568
    Input power/mW 0.25 ~2
    Adjustable gain/mW 200
    Noise index/mW 3.55
    Power supply DC+5 V
    (Working current: 350 mA)
    Pigtail FC/APC
    下载: 导出CSV

    表 3  C-lens准直系统耦合效率测试数据

    Table 3.  C-lens collimation system coupling efficiency test data

    Wave-
    length/nm
    P1/mW P2/mW P3/μW Coupling
    efficiency
    (P3/P2)/%
    0 0 0 0
    2.1 1.670 0.2 0.01
    4.1 3.205 1 0.03
    6.1 4.767 3 0.06
    8.1 6.313 13 0.02
    1550 10.1 7.816 16 0.02
    12.0 9.397 28 0.03
    14.0 10.86 33 0.03
    16.1 12.49 37 0.03
    18.1 13.96 52 0.037
    20.1 16.74 104 0.06
    下载: 导出CSV

    表 4  改进后准直系统耦合效率测试数据

    Table 4.  Improved collimation system coupling efficiency test data

    Wave-
    length/nm
    P1/mW P2/mW P3/mW Coupling
    efficiency
    (Р3/Р2)/%
    0 0 0 0
    2.1 1.670 0.042 2.51
    4.1 3.205 0.096 3
    6.1 4.767 0.192 4.1
    8.1 6.313 0.308 4.88
    1550 10.1 7.816 0.406 5.2
    12.0 9.397 0.523 5.55
    14.0 10.86 0.614 5.65
    16.1 12.49 0.727 5.8
    18.1 13.96 0.838 6
    20.1 16.74 1.05 6.3
    下载: 导出CSV
  • [1]

    Barker L M, Hollenbach R E. Laser interferometer for measuring high velocities of any reflecting surface[J]. Journal of Applied Physics, 1972, 43(11): 4669-4675. doi: 10.1063/1.1660986

    [2]

    汪源源, FISH P J.多普勒信号分析技术的比较研究[J].复旦学报(自然科学版), 1996, 35(1): 53-61.

    Wang Y Y, Fish P J. Comparison research of Doppler signal analysis techniques[J]. Journal of Fudan University (Natural Science), 1996, 35(1): 53-61

    [3]

    毛士艺, 张瑞生, 许伟武, 等.脉冲多普勒雷达[M].北京:国防工业出版社, 2016.

    [4]

    彭其先, 蒙建华, 王德田, 等.全光纤速度干涉仪设计及应用[J].光子学报, 2010, 39(11): 2008-2011. http://d.wanfangdata.com.cn/Periodical_gzxb201011018.aspx

    Peng Q X, Meng J H, Wang D T, et al. Design and application of all-fiber velocity interferometer[J]. Acta Photonica Sinica, 2010, 39(11): 2008-2011. http://d.wanfangdata.com.cn/Periodical_gzxb201011018.aspx

    [5]

    朱少丽, 徐秋霜, 刘德森.自聚焦透镜在光纤准直器中的应用分析[J].西南师范大学学报(自然科学版), 2004, 29(3): 379-382. http://www.cqvip.com/QK/93403X/200403/9781065.html

    Zhu S L, Xu Q S, Liu D S, The analysis of GRIN in optical fiber collimator[J]. Journal of Southwest China Normal University (Natural Science Edition), 2004, 29(3): 379-382. http://www.cqvip.com/QK/93403X/200403/9781065.html

    [6]

    Lu Y Q, Palais J C, Chen Y. Coupling efficiency of single-mode fiber components using GRIN-rod lenses[J]. Fiber and Integrated Optics, 1988, 7(2): 85-107. doi: 10.1080/01468038808222978

    [7]

    肖逾男. 基于DSP芯片的激光多普勒测速仪的研制[D]. 武汉: 武汉大学, 2004: 6-8.

    Xiao Y N. Research on an laser Doppler velocimetry based on DSPs[D]. Wuhan: Wuhan University, 2004: 6-8.

    [8]

    Wardell K, Jakobsson A, Nilsson G E. Laser Doppler perfusion imaging by dynamic light scattering[J]. IEEE Transactions on Biomedical Engineering, 1993, 40(4): 309-316. doi: 10.1109/10.222322

    [9]

    Talley D, Fortney D, Fiala N, et al. Gated laser Doppler flowmetry using a proximity-contact probe[C]//Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1988, 4: 1849-1850.

    [10]

    Özdemir S K, Takamiya S, Shinohara S, et al. A speckle velocimeter using a semiconductor laser with external optical feedback from a moving surface: effects of system parameters on the reproducibility and accuracy of measurements[J]. Measurement Science and Technology, 2000, 11(10): 1447-1455. https://www.researchgate.net/publication/3849517_Speckle_velocimeter_with_a_self-mixing_laser_diode_optimization_ofmeasurement_system_reproducibility_and_accuracy_of_measurements

    [11]

    Shibata T, Shinohara S, Ikeda H, et al. Laser speckle velocimeter using self-mixing laser diode[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2): 499-503. doi: 10.1109/19.492775

    [12]

    杨坤涛, 陈捷.光纤准直器自动调试装配系统的设计[J].光电工程, 2003, 30(2): 36-38, 52. http://www.docin.com/p-511905823.html

    Yang K T, Chen J. Design of automatic debugging and assembling system for optic fiber collimator[J]. Opto-Electronic Engineering, 2003, 30(2): 36-38, 52. http://www.docin.com/p-511905823.html

    [13]

    王素芹, 阮玉, 殷东亮, 等. C-lens准直器回波损耗的理论计算与分析[J].光电子技术与信息, 2003, 16(1): 24-28. https://www.wenkuxiazai.com/doc/51ec3164783e0912a2162ac0...

    Wang S Q. Ruan Y, Yin D L, et al. The calculation and analizing of the RL of C-lens collimator[J]. Optoelectronic Technology & Information, 2003, 16(1): 24-28. https://www.wenkuxiazai.com/doc/51ec3164783e0912a2162ac0...

    [14]

    丁东发, 夏君磊.干涉型光纤传感用光电子器件技术[M].北京:科学出版社, 2012.

    [15]

    江山, 刘水华, 方罗珍, 等.单模光纤斜面连接的回波损耗[J].光通信研究, 1994(3): 31-37.

    Jiang S, Liu S H, Fang L Z, et al. Return loss in single-mode fiber joints with bevelled endface[J]. Study on Optical Communications, 1994(3): 31-37.

    [16]

    王冠飞. 新型掺铒光纤放大器的研究[D]. 北京: 北京交通大学, 2009: 27-28.

    Wang G F. Research in advanced erbium-doped fiber amplifier[D]. Beijing: Beijing Jiaotong University, 2009: 27-28.http://d.wanfangdata.com.cn/Thesis/Y1578208

  • 加载中

(10)

(4)

计量
  • 文章访问数:  8850
  • PDF下载数:  3819
  • 施引文献:  0
出版历程
收稿日期:  2017-11-13
修回日期:  2017-12-30
刊出日期:  2018-02-22

目录

/

返回文章
返回