大气湍流畸变波前斜率的稀疏分解

李娟娟, 蔡冬梅, 贾鹏, 等. 大气湍流畸变波前斜率的稀疏分解[J]. 光电工程, 2018, 45(2): 170616. doi: 10.12086/oee.2018.170616
引用本文: 李娟娟, 蔡冬梅, 贾鹏, 等. 大气湍流畸变波前斜率的稀疏分解[J]. 光电工程, 2018, 45(2): 170616. doi: 10.12086/oee.2018.170616
Li Juanjuan, Cai Dongmei, Jia Peng, et al. Sparse decomposition of atmospheric turbulence wavefront gradient[J]. Opto-Electronic Engineering, 2018, 45(2): 170616. doi: 10.12086/oee.2018.170616
Citation: Li Juanjuan, Cai Dongmei, Jia Peng, et al. Sparse decomposition of atmospheric turbulence wavefront gradient[J]. Opto-Electronic Engineering, 2018, 45(2): 170616. doi: 10.12086/oee.2018.170616

大气湍流畸变波前斜率的稀疏分解

  • 基金项目:
    国家自然科学基金青年科学基金项目(11503018);天文联合基金项目(U1631133)
详细信息
    作者简介:
    通讯作者: 蔡冬梅(1974-),女,博士,副教授,主要从事液晶自适应光学技术、大气湍流模拟的研究。E-mail:dm_cai@163.com
  • 中图分类号: O439

Sparse decomposition of atmospheric turbulence wavefront gradient

  • Fund Project: Supported by Young Scientist Funds of National Natural Science Foundation of China (11503018) and Joint Research Fund in Astronomy (U1631133)
More Information
  • 利用压缩感知技术对大气湍流波前探测数据进行压缩,可使测量数据量大幅度减少,能有效降低数据的传输与存储压力,有利于湍流波前的实时测量;但压缩条件要求波前信号是稀疏的或在某个变换域内能够稀疏表示。本文对大气湍流波前斜率信号的稀疏性进行了初步研究,基于大气湍流的统计特性,在频域内对湍流功率谱作黄金分割采样(GS),建立符合大气湍流斜率物理特征的稀疏基,明确了湍流波前斜率的稀疏性。利用该GS稀疏基对波前斜率进行稀疏分解,并通过仿真实验对比了不同稀疏基对波前斜率的稀疏分解效果。在此基础上,以GS基作为训练基的初始化字典,进行K奇异值分解字典训练(KSVD),得到训练基(KSVD-GS),分析了该训练基对波前斜率信号的稀疏表示性能。本文验证了波前斜率能够稀疏分解,建立了一个较好的稀疏基,为压缩感知的应用提供了前提基础。

  • Overview: In astronomical imaging observation, the image quality of observation object decreases because of the influence of atmospheric turbulence and noise. Adaptive optics technique is an effective method to correct atmospheric turbulence disturbance. Wavefront sensor, as the eye of the adaptive system, can detect the distorted wavefront which is affected by atmospheric turbulence in real time. As the aperture of the telescope expands, the resolution is improved and the compressive sensing technique is used to measure the atmospheric turbulent wavefront gradient. Compressive sensing can greatly reduce the amount of measured data, and effectively reduce the pressure of data transmission and storage, which is good for real-time measurement of the turbulent wavefront. But this requires the measurement signal is sparse or can be sparsely represented in one transform domain. In this paper, the sparsity of atmospheric turbulence wavefront gradient signal is studied. Based on the statistical characteristics of atmospheric turbulence, the turbulent power spectrum is sampled by golden section (GS) in the frequency domain, to establish a sparse basis that conforms to the physical characteristics of the atmospheric turbulence, and this basis verifies the sparsity of turbulent wavefront gradient. The sparse decomposition of the wavefront gradient is simulated by using the GS sparse base, and the sparse decomposition effect on the wavefront gradient is compared under different bases such as discrete Fourier transform(DFT), over complete discrete Fourier transform (ODFT), and Zernike. Changing the sparse coefficient value K, the sparse representation performances of different sparse basis were discussed. Simulation results show that the sparse decomposition performance of sparse basis GS established in this paper is better than that other sparse bases, the PSNR of sparse basis is improved 2 dB~5 dB, and the MAER of sparse basis is 0~0.04 decreased. Then the gradients of 60 phase screens are selected for sparse decomposition, which fully verifies that GS basis effect is better than other sparse bases. On the GS basis, the training base (KSVD-GS) is obtained through K-singular value decomposition (KSVD) method, the sparse representation performance of the training basis of the wavefront gradient signal is analyzed, the PSNR is increased 2 dB, and the MAER is decreased 0.01. Finally, by increasing the noise and comparing the robustness of each sparse base, the robustness of the GS base is better than that of other sparse bases. In this paper, we mainly study the sparse decomposition of the wavefront gradient and provide the precondition for the application of compressive sensing.

  • 加载中
  • 图 1  大气湍流相位屏及相位结构函数。(a)湍流相位屏; (b)相位结构函数对数图

    Figure 1.  Atmospheric turbulence phase screen and structure function of logarithmic. (a) Atmospheric turbulence; (b) Structure function logarithmic

    图 2  湍流波前XY方向的斜率。(a)波前X方向斜率Gx; (b)波前Y方向斜率Gy

    Figure 2.  The turbulent wavefront gradient in X, Y direction. (a) Wavefront X-direction gradient Gx; (b) Wavefront Y-direction gradient Gy

    图 3  黄金分割法流程图

    Figure 3.  Flowchart of golden section method

    图 4  在稀疏系数是20×256下各稀疏基复原的湍流及误差图。(a) DFT复原湍流,PSNR为34.45;(b) DFT湍流误差,MAER为0.038; (c) ODFT复原湍流,PSNR为35.56;(d) ODFT湍流误差,MAER为0.034; (e) Zernike复原湍流,PSNR为32.82; (f) Zernike湍流误差,MAER为0.047; (g) GS复原湍流,PSNR为40.29;(h) GS湍流误差,MAER为0.019

    Figure 4.  When the sparse coefficient is 20 x 256 the restored turbulence and the error graph in each sparse basis. (a) DFT restored turbulence, PSNR is 34.45; (b) DFT error of turbulence, MAER is 0.038;(c) ODFT restored turbulence, PSNR is 35.56; (d) ODFT error of turbulence, MAER is 0.034; (e) Zernike restored turbulence, PSNR is 32.82; (f) Zernike error of turbulence, MAER is 0.047; (g) GS restored turbulence, PSNR is 40.29; (h) GS error of turbulence, MAER is 0.019

    图 5  各稀疏基在不同稀疏系数下的比较。(a)不同稀疏系数下的PSNR;(b)不同稀疏系数下的MAER

    Figure 5.  The comparison of each sparse basis under different sparse coefficient. (a) PSNR in different sparse coefficient; (b) MAER in different sparse coefficient

    图 6  各个稀疏基在不同稀疏系数下的比较。(a)不同稀疏系数下的PSNR;(b)不同稀疏系数下的MAER

    Figure 6.  The comparison of each sparse basis under different coefficient. (a) PSNR in different sparse coefficient; (b) MAER in different sparse coefficient

    图 7  各个稀疏基在不同噪声下的比较。(a)不同稀疏系数下的PSNR;(b)不同稀疏系数下的MAER

    Figure 7.  The comparison of different sparse basis under different SNR. (a) PSNR of different sparse coefficient; (b) MAER of different sparse coefficient

    表 1  K=20 时不同稀疏基的稀疏表示性能及运行时间

    Table 1.  The sparse decomposition performance and running time in each sparse basis when K=20

    Basis PSNR/dB MAER Time/s
    DFT 36.9066 0.0289 1.735
    ODFT 37.252 0.0280 2.430
    Zernike 34.837 0.0393 0.8436
    GS 39.1987 0.0236 0.8666
    KSVD-GS 38.7901 0.0251 0.8369
    下载: 导出CSV
  • [1]

    鲜浩. 自适应光学系统波前传感器设计与优化[D]. 成都: 电子科技大学, 2008.

    Xian H. Design and optimization of wavefront sensor for adaptive optics system[D]. Chengdu: University of Electronic Science and Technology of China, 2008.http://www.doc88.com/p-7834017262314.html

    [2]

    曹召良, 穆全全, 徐焕宇, 等.开环液晶自适应光学系统:研究进展和结果(英文)[J].红外与激光工程, 2016, 45(4): 0402002. http://www.opticsjournal.net/Articles/Abstract?aid=OJ...

    Cao Z L, Mu Q Q, Xu H Y, et al. Open loop liquid crystal adaptive optics systems: progresses and results[J]. Infrared and Laser Engineering, 2016, 45(4): 0402002. http://www.opticsjournal.net/Articles/Abstract?aid=OJ...

    [3]

    陆长明, 饶长辉, 黄惠明, 等.天文学自适应光学成像望远镜的模拟[J].光电工程, 2006, 33(1): 20–23. http://d.wanfangdata.com.cn/Periodical_gdgc200601005.aspx

    Lu C M, Rao C H, Huang H M, et al. Simulation of an astronomical adaptive optics imaging telescope[J]. Opto-Electronic Engineering, 2006, 33(1): 20–23. http://d.wanfangdata.com.cn/Periodical_gdgc200601005.aspx

    [4]

    蒋志凌. 哈特曼波前传感器特性和应用研究[D]. 武汉: 武汉物理与数学研究所, 2005.

    Jiang Z L. Study on characteristics and applications of Hartmann wavefront sensor[D]. Wuhan: Wuhan Institute of Physics and Mathematics of Chinese Academy of Sciences, 2005.http://cdmd.cnki.com.cn/Article/CDMD-80020-2006155762.htm

    [5]

    Rostami M, Michailovich O, Wang Z. Image Deblurring using derivative compressed sensing for optical imaging application[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3139–3149. doi: 10.1109/TIP.2012.2190610

    [6]

    Polans J, Mcnabb R P, Izatt J A, et al. Compressed wavefront sensing[J]. Optics Letters, 2014, 39(5): 1189–1192. doi: 10.1364/OL.39.001189

    [7]

    Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083

    [8]

    管蓉. 基于压缩感知的图像稀疏表示方法[D]. 太原: 中北大学, 2012.

    Guan R. The sparse representation method based on compressed sensing[D]. Taiyuan: North University of China, 2012.http://www.doc88.com/p-7498229836854.html

    [9]

    徐勇峻. 基于信号稀疏表示的字典设计[D]. 南京: 南京理工大学, 2013.

    Xu Y J. Dictionary design based on sparse representation of signals[D]. Nanjing: Nanjing University of Science and Technology, 2013.

    [10]

    吕方旭, 张金成, 王泉, 等.基于傅里叶基的自适应压缩感知重构算法[J].北京航空航天大学学报, 2014, 40(4): 544–550. http://doi.cnki.net/Resolution/Handler?doi=10.13700/j.bh.1001-5965.2013.0332

    Lv F X, Zhang J C, Wang Q, et al. Adaptive recovery algorithm for compressive sensing based on Fourier basis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 544–550. http://doi.cnki.net/Resolution/Handler?doi=10.13700/j.bh.1001-5965.2013.0332

    [11]

    刘丹华. 信号稀疏分解及压缩感知理论应用研究[D]. 西安: 西安电子科技大学, 2009.

    Liu D H. Research on sparse signal decomposition and compressed sensing theory[D]. Xi'an: Xidian University, 2009.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D098663

    [12]

    尹航, 宋新, 闫野.星图的稀疏表示性能[J].光学精密工程, 2015, 23(2): 573–581. http://d.wanfangdata.com.cn/Periodical_gxjmgc201502033.aspx

    Yin H, Song X, Yan Y. Performance on sparse representation of star images[J]. Optics and Precision Engineering, 2015, 23(2): 573–581. http://d.wanfangdata.com.cn/Periodical_gxjmgc201502033.aspx

    [13]

    张智露. 室内大气湍流模拟系统的研究[D]. 太原: 太原理工大学, 2017.

    Zhang Z L. Research on the simulation system of indoor atmospheric turbulence[D]. Taiyuan: Taiyuan University of Technology, 2017.

    [14]

    蔡冬梅, 王昆, 贾鹏, 等.功率谱反演大气湍流随机相位屏采样方法的研究[J].物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217

    Cai D M, Wang K, Jia P, et al. Sampling methods of power spectral density method simulating atmospheric turbulence phase screen[J]. Acta Physica Sinica, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217

    [15]

    Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666. doi: 10.1109/TIT.2007.909108

    [16]

    Jia P, Cai D M, Wang D, et al. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer[J]. Monthly Notices of the Royal Astronomical Society, 2015, 447(4): 3467–3474. doi: 10.1093/mnras/stu2655

    [17]

    王奇涛, 佟首峰, 徐友会.采用Zernike多项式对大气湍流相位屏的仿真和验证[J].红外与激光工程, 2013, 42(7): 1907–1911. http://d.wanfangdata.com.cn/Periodical_hwyjggc201307046.aspx

    Wang Q T, Tong S F, Xu Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared and Laser Engineering, 2013, 42(7): 1907–1911. http://d.wanfangdata.com.cn/Periodical_hwyjggc201307046.aspx

    [18]

    Zhang Q, Jiang W H, Xu B. Study of Zonal wavefront reconstruction adapting for Hartmann-Shack wavefront sensor[J]. High Power Laser and Particle Beams, 1998, 10(2): 229–233. https://www.researchgate.net/publication/282990219_Study_on_Zonal...

    [19]

    Aharon M, Elad M, Bruckstein A. RMK-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199

  • 加载中

(7)

(1)

计量
  • 文章访问数:  7690
  • PDF下载数:  3274
  • 施引文献:  0
出版历程
收稿日期:  2017-11-10
修回日期:  2017-12-29
刊出日期:  2018-02-22

目录

/

返回文章
返回