微型光谱仪中传感器S11639的非线性校正

童建平, 高建勋, 汪飞, 等. 微型光谱仪中传感器S11639的非线性校正[J]. 光电工程, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010
引用本文: 童建平, 高建勋, 汪飞, 等. 微型光谱仪中传感器S11639的非线性校正[J]. 光电工程, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010
Jianping Tong, Jianxun Gao, Fei Wang, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010
Citation: Jianping Tong, Jianxun Gao, Fei Wang, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010

微型光谱仪中传感器S11639的非线性校正

  • 基金项目:
    国家自然科学青年基金资助项目(11605153)
详细信息

Nonlinear correction of the sensor S11639 in mini-spectrometer

  • Fund Project:
More Information
  • S11639线阵传感器常被用于需要紫外测量的微型光谱仪中。但当S11639曝光量较大时,会出现光谱响应的非线性,从而影响微型光谱仪的动态范围,因此必须进行非线性校正。利用卤钨灯与氘灯测量微型光谱仪的光电响应特性曲线,找出S11639的曝光量与A/D转换输出的线性部分,对数据进行直线拟合,获得S11639在线性范围内的系数。在此基础上,外推得到其在非线性范围内的理论值,求出理论值与实际测量值的差异,利用最小二乘法进行多项式拟合,实现S11639线阵传感器的非线性校正。同时,对比实验结果,分析实验数据的误差成因,为更好地利用基于S11639微型光谱仪的全动态范围光电检测提供实验依据。

  • Abstract: S11639 is often used in mini-spectrometer for UV measurement. Ideally, each pixel of S11639, in the whole dynamic range, has good linearity between the amount of incident light and signal charge produced by photoelectric conversion. However, when the exposure of S11639 is bigger, the nonlinearity of S11639 photoelectric response will appear. The nonlinearity of S11639 is related to its structure, because sharing and diffusion of the pixel potential wells occur in the photosensitive area, and the charge interaction enhances more with the increase of the exposure, and even leads to charge overflow. So the more the exposure, the worse the linearity of S11639. The nonlinearity of the S11639 photoelectric response affects the dynamic range of the spectrometer. S11639 is applied in mini-spectrometer which has its own light dispersion system. Halogen tungsten lamp and deuterium lamp are compensated to light from the ultraviolet to the near infrared range of 215 nm~2500 nm. The light is injected through the optical fiber to spectrometer with this light source. The composite light passing asymmetric C-T optical system is decomposed into monochromatic light which is shined on the surface of S11639. The signal is amplified linearly and converted by A/D converter, and the output of A/D conversion is a function of the exposure. Photoelectric response of S11639 is measured to find out the relations between the exposure and the A/D conversion output in the multi wavelength positions of S11639. The conclusion is described below: If the A/D initial output values are the same in different wavelength positions by adjusting the light intensity, the integral time is changed at the same step, and the changes of A/D output value are still the same, so only a photoelectric response curve is measured at one wavelength position, which is suitable for other wavelengths. By changing the integration time of the spectrometer at one wavelength position, the exposure of S11639 is changed, and the value of the A/D conversion is obtained. Straight line fitting of the data is made to obtain the factors of S11639 in the linear range of one wavelength position. Extrapolating from the linear part will reach the theoretical values in nonlinear range, and we can calculate the differences between the actual measurement values and the theoretical values. The polynomial fitting with least squares method realizes the nonlinear correction of S11639 at one wavelength position. Since the coefficients of the linear fitting are the same at different wavelengths, they can be applied to nonlinear correction at other wavelengths. At the same time, compared with the experimental results, the error causes of the experimental data are analyzed, and the experiment is provided for better utilization of mini-spectrometer based on S11639 for photoelectric detection in the full dynamic range.

  • 加载中
  • 图 1  不同积分时间的光谱响应.

    Figure 1.  Spectral response in different integration time.

    图 2  测试示意图.

    Figure 2.  Schematic of test.

    图 3  S11639的积分时间与A/D转换值关系图.

    Figure 3.  A/D converter data vs. integral time of S11639.

    表 1  S11639的A/D转换值.

    Table 1.  A/D converter data of S11639.

    积分时间t/ms波长/nm
    256.690263.551759.842807.5
    0.5850878855858
    5.01473149214661478
    10.02157221021382162
    20.03525353035413552
    30.04852487149064881
    40.06250628862486283
    50.07521764875437587
    100.014100142731435814440
    200.027169274322759727787
    300.040107404974103040987
    350.046158466484761647323
    400.051600516665162051111
    450.056167566055659556312
    500.062618631596259762819
    下载: 导出CSV

    表 2  759.842 nm处A/D的理论值与实际差值.

    Table 2.  A/D differences between theoretical value and actual value at 759.842 nm.

    积分时间t/ms理论值实际值两者差百分误差/%
    0.5920855657.09
    5.015221466563.70
    10.021912138532.43
    20.035293541-11-0.33
    30.048674906-38-0.79
    40.062056248-42-0.68
    50.07543754300.00
    100.01423314358-124-0.88
    200.02761327597160.06
    300.04099341030-360.09
    350.04768347616670.14
    400.0543735162027535.06
    450.0610635659544687.32
    500.0677536259751567.61
    下载: 导出CSV

    表 3  256.690 nm处A/D的理论值与实际差值.

    Table 3.  A/D differences between theoretical value and actual value at 256.690 nm.

    积分时间t/ms理论值实际值修正程度值修正后的值百分误差/%
    0.510098503853-15.47
    5.015941473471520-4.63
    10.022442157732230-0.63
    20.0354435257235971.47
    30.0484548522848800.72
    40.061466250-3762121.08
    50.074477521-987423-0.32
    100.01395014100-17313927-0.16
    200.02695627169151273201.35
    300.03996240107-43439673-0.72
    350.04646546158333464910.06
    400.052968516002265538651.69
    450.059471561674378605451.80
    500.065974626185147677652.72
    下载: 导出CSV
  • [1]

    苏小会, 陈飞, 徐淑萍, 等.基于光谱分析的便携式烟气分析仪[J].仪表技术与传感器, 2012(11): 71–74. doi: 10.3969/j.issn.1002-1841.2012.11.024

    Su Xiaohui, Chen Fei, Xu Shuping, et al. Portable flue gas analyzer based on spectrum[J]. Instrument Technique and Sensor, 2012(11): 71–74. doi: 10.3969/j.issn.1002-1841.2012.11.024

    [2]

    樊书祥, 黄文倩, 张保华, 等.便携式苹果糖度光谱检测仪的设计与试验[J].红外与激光工程, 2014, 43(增刊1): 219–224. http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspx

    Fan Shuxiang, Huang Wenqian, Zhang Baohua, et al. Design and experiment on portable apple soluble solids content spectrometer[J]. Infrared and Laser Engineering, 2014, 43(S1): 219–224. http://d.wanfangdata.com.cn/Periodical_hwyjggc2014z1037.aspx

    [3]

    韩孝贞, 温志渝, 谢瑛珂, 等.多参数水质检测仪控制与信号处理系统软件设计[J].仪表技术与传感器, 2014(8): 20–22, 65. http://www.cqvip.com/QK/94978X/201408/662233314.html

    Han Xiaozhen, Wen Zhiyu, Xie Yingke, et al. Software design of control and signal processing system for multi-parameter water quality detecting instrument[J]. Instrument Technique and Sensor, 2014(8): 20–22, 65. http://www.cqvip.com/QK/94978X/201408/662233314.html

    [4]

    张倩, 张学典, 常敏, 等.一种用于LED特性检测的实验仪器的研究[J].光学仪器, 2013, 35(1): 84–88. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQ

    Zhang Qian, Zhang Xuedian, Chang Min, et al. A research of laboratory instrument for LED property measurement[J]. Optical Instruments, 2013, 35(1): 84–88. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxyq201301017&dbname=CJFD&dbcode=CJFQ

    [5]

    曾甜玲, 温志渝, 温中泉, 等.基于紫外光谱分析的水质监测技术研究进展[J].光谱学与光谱分析, 2013, 33(4): 1098–1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047

    Zeng Tianling, Wen Zhiyu, Wen Zhongquan, et al. Research progressin water quality monitoring technology based on ultraviolet spectrum analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(4): 1098–1103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201104047

    [6]

    杜晨光, 孙利群, 丁志田.利用晕苯增强CCD紫外响应的实验研究[J].光学技术, 2010, 36(5): 753–757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025

    Du Chenguang, Sun Liqun, Ding Zhitian. Experiment study of enhancing CCD ultraviolet response using coronene[J]. Optical Technique, 2010, 36(5): 753–757. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjs201005025

    [7]

    张大伟, 田鑫, 黄元申, 等. CCD紫外敏感Lumogen薄膜制备与光谱表征[J].光谱学与光谱分析, 2010, 30(5): 1171–1174. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract3578.shtml

    Zhang Dawei, Tian Xin, Huang Yuanshen, et al. Preparation and spectral characterization of lumogen coatings for UV-responsive CCD image sensors[J]. Spectroscopy and Spectral Analysis, 2010, 30(5): 1171–1174. http://manu13.magtech.com.cn/gpx/CN/abstract/abstract3578.shtml

    [8]

    童建平, 董少波, 杨浩, 等.基于S11639的紫外-可见光谱仪的设计[J].光学仪器, 2015, 37(3): 272–277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201503018

    Tong Jianping, Dong Shaobo, Yang Hao, et al. The design of UV–VIS spectrometer based on S11639[J]. Optical Instruments, 2015, 37(3): 272–277. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201503018

    [9]

    谢旭东, 陈波, 刘华, 等. CCD系统线性动态范围的标定[J].强激光与粒子束, 2000, 12(增刊1): 182–184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs2000Z2018

    Xie Xudong, Chen Bo, Liu Hua, et al. Calibration of linear dynamic range for CCD system[J]. High Power Laser And Particle Beams, 2000, 12(S1): 182–184. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qjgylzs2000Z2018

    [10]

    王淑青, 段海峰, 杨泽平, 等.双缝衍射用CCD响应特性标定的模拟研究[J].光电工程, 2001, 28(4): 19–21. http://www.cqvip.com/qk/90982A/200104/5425002.html

    Wang Shuqing, Duan Haifeng, Yang Zeping, et al. Simulation research for double-slit diffraction application to CCD response features scaling[J]. Opto-Electronic Engineering, 2001, 28(4): 19–21. http://www.cqvip.com/qk/90982A/200104/5425002.html

    [11]

    林晓钢, 顾乃庭, 杨泽平.小孔夫琅和费衍射法标定CCD光电响应特性[J].光学精密工程, 2008, 16(3): 410–414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200803007

    Lin Xiaogang, Gu Naiting, Yang Zeping. Calibration of CCD photoelectric characteristics by pinhole Fraunhofer diffraction method[J]. Optics and Precision Engineering, 2008, 16(3): 410–414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200803007

    [12]

    赵友全, 江磊, 何峰, 等.线阵CCD光电响应非线性特性测定与分析[J].光电工程, 2015, 42(7): 19–23. http://doi.wanfangdata.com.cn/10.3969/j.issn.1003-501X.2015.07.004

    Zhao Youquan, Jiang Lei, He Feng, et al. Measurement and analysis of linear CCD nonlinear optical response characteristics[J]. Opto-Electronic Engineering, 2015, 42(7): 19–23. http://doi.wanfangdata.com.cn/10.3969/j.issn.1003-501X.2015.07.004

    [13]

    甘振华, 杜民, 高跃明, 等.基于LED的CCD光强响应特性测定[J].中国测试, 2016, 42(12): 121–125. doi: 10.11857/j.issn.1674-5124.2016.12.025

    Gan Zhenhua, Du Min, Gao Yueming, et al. Measurement of CCD light intensity response characteristics based on LED[J]. China Measument & Test, 2016, 42(12): 121–125. doi: 10.11857/j.issn.1674-5124.2016.12.025

    [14]

    张震, 程湘爱, 姜宗福.强光致CCD过饱和效应机理分析[J].强激光与粒子束, 2010, 22(2): 236–237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201002004&dbname=CJFD&dbcode=CJFQ

    Zhang Zhen, Cheng Xiang' ai, Jiang Zongfu. Mechanism analysis of CCD excessive saturation effect induced by intense light[J]. High Power Laser And Particle Beams, 2010, 22(2): 236–237. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qjgy201002004&dbname=CJFD&dbcode=CJFQ

    [15]

    郝向南, 聂劲松, 李化. CCD强光饱和效应的温度因素分析[J].光电工程, 2011, 38(7): 54–58. http://www.cqvip.com/QK/90982A/201107/38542414.html

    Hao Xiangnan, Nie Jingsong, Li Hua. Temperature impact on saturation effect of CCD induced by highlight[J]. Opto-Electronic Engineering, 2011, 38(7): 54–58. http://www.cqvip.com/QK/90982A/201107/38542414.html

    [16]

    周建康, 沈为民, 唐敏学. CCD测量动态范围的扩展技术[J].光电工程, 2006, 33(10): 96–100, 114. doi: 10.3969/j.issn.1003-501X.2006.10.018

    Zhou Jiankang, Shen Weimin, Tang Minxue. Extended dynam-ic-range techniques of CCD measurements[J]. Opto-Electronic Engineering, 2006, 33(10): 96–100, 114. doi: 10.3969/j.issn.1003-501X.2006.10.018

    [17]

    雷仁方, 王晓强, 杨洪, 等. CCD纵向溢出漏结构工艺仿真与实现[J].半导体光电, 2013, 34(5): 775–777. http://www.cqvip.com/QK/91994X/201305/47881977.html

    Lei Renfang, Wang Xiaoqiang, Yang Hong, et al. Simulation and fabrication of vertical spillover drain structure of CCD[J]. Semiconductor Optoelectronics, 2013, 34(5): 775–777. http://www.cqvip.com/QK/91994X/201305/47881977.html

  • 加载中

(3)

(3)

计量
  • 文章访问数:  8913
  • PDF下载数:  4209
  • 施引文献:  0
出版历程
收稿日期:  2017-08-10
修回日期:  2017-10-10
刊出日期:  2017-11-15

目录

/

返回文章
返回