多旋翼无人飞行器机载光电平台的复合补偿控制方法

王日俊, 白越, 曾志强, 等. 多旋翼无人飞行器机载光电平台的复合补偿控制方法[J]. 光电工程, 2017, 44(10): 983-989. doi: 10.3969/j.issn.1003-501X.2017.10.006
引用本文: 王日俊, 白越, 曾志强, 等. 多旋翼无人飞行器机载光电平台的复合补偿控制方法[J]. 光电工程, 2017, 44(10): 983-989. doi: 10.3969/j.issn.1003-501X.2017.10.006
Wang Rijun, Bai Yue, Zeng Zhiqiang, et al. Composite compensation control method for airborne opto-electronic platform mounted on multi-rotor UAV[J]. Opto-Electronic Engineering, 2017, 44(10): 983-989. doi: 10.3969/j.issn.1003-501X.2017.10.006
Citation: Wang Rijun, Bai Yue, Zeng Zhiqiang, et al. Composite compensation control method for airborne opto-electronic platform mounted on multi-rotor UAV[J]. Opto-Electronic Engineering, 2017, 44(10): 983-989. doi: 10.3969/j.issn.1003-501X.2017.10.006

多旋翼无人飞行器机载光电平台的复合补偿控制方法

  • 基金项目:
    国家自然科学基金(11372309);中北大学自然科学基金(XJJ2016006)
详细信息

Composite compensation control method for airborne opto-electronic platform mounted on multi-rotor UAV

  • Fund Project:
More Information
  • 为了提高多旋翼无人飞行器机载光电平台的扰动补偿能力,实现机载光电平台的稳定跟踪控制,提出一种基于改进扰动观测器和径向基函数(RBF)神经网络逼近的复合补偿控制方法。首先,对现有扰动观测器结构进行改进,构建基于速度信号的改进型扰动观测器,并分析了干扰补偿能力和稳健性;然后,利用RBF神经网络的函数逼近性质解决非线性未知扰动的补偿问题;最后,基于Lyapunov稳定性原理设计出复合补偿控制结构。实验结果表明,机载光电平台的扰动得到有效补偿。该补偿控制方法具有较高的稳定精度和跟踪控制性能,满足多旋翼无人飞行器机载光电平台的稳定控制要求。

  • Recently, multi-rotor unmanned aerial vehicle (MUAV) has been widely used in military and civilian fields. Airborne opto-electronic platform (AOEP) is the key to the application of MUAV, such as target reconnaissance, identification and tracking. The imaging quality, recognition accuracy and tracking accuracy of airborne opto-electronic devices, to a large extent, depend on the stable control performance of the AOEP. Unfortunately, the AOEP is vulnerably affected by air disturbance, vibration and other unknown disturbance factors during the flight operation process, which seriously influences the stability and accuracy, and even leads to reconnaissance and tracking tasks failure. Therefore, how to improve the anti-disturbance ability of the AOEP has become the key problem, which restricts the development and applications of the MUAV severely. It has been one of the hot research directions in recent years.

    For the problem of disturbance compensation of airborne stabilized platform, the control method based on disturbance observer (DOB) has been widely used. To a certain extent, the stability control performance of the airborne stabilized platform is improved. However, the compensation effect of DOB on high frequency noise is not ideal. Simultaneously, disturbance usually has strong nonlinearity. It is difficult to obtain ideal tracking control performance by using DOB method only. Fortunately, neural networks and fuzzy systems are real-time, robust, and can approximate any function. They have been widely used in the tracking control system of stabilized platform.

    Aiming at the disturbance compensation and stability control of AOEP, a composite compensation control method for AOEP mounted on MUAV is proposed. First, to eliminate the effects of high frequency noise, by introducing a compensation control into the original DOB structure, an improved disturbance observer (IDOB) based on the velocity signal is proposed. Second, considering the nonlinearity of the disturbance, the radial basis function neural network (RBFNN) is used to estimate and compensate the nonlinear disturbance. In order to realize the stable control of AOEP, a composite compensation control system based on IDOB and RBFNN is designed by using Lyapunov stability principle. It is proved that the proposed control system is asymptotically stable and the tracking error is bounded. It has good stability and robustness. Finally, the effectiveness of the method is verified by experiments. The experimental results show that the IDOB structure has better disturbance rejection ability and has higher stability accuracy. The proposed method can restrain the effect of disturbance to the AOEP system. The AOEP has higher stability and tracking precision. The composite compensation control system completely satisfies the requirements of tracking control of AOEP.

  • 加载中
  • 图 1  IDOB的结构.

    Figure 1.  Structure of IDOB.

    图 2  复合补偿控制结构.

    Figure 2.  Structure of composite control system based on RBFNN.

    图 3  RBFNN结构.

    Figure 3.  Structure diagram of RBFNN.

    图 4  实验用搭载于多旋翼无人飞行器的机载光电平台.

    Figure 4.  Airborne opto-electronic platform mounted on mUAV for experiment.

    图 5  视轴稳定控制对比结果. (a)扰动观测器. (b)改进型扰动观测器.

    Figure 5.  Comparison results of line of sight error. (a) DOB. (b) IDOB.

    图 6  未引入RBFNN的位置跟踪曲线. (a)位置跟踪曲线. (b)跟踪误差.

    Figure 6.  Position tracking curve without RBFNN. (a) Position tracking curve. (a) Position tracking error.

    图 7  引入RBFNN跟踪曲线. (a)位置跟踪曲线. (b)跟踪误差.

    Figure 7.  Position tracking curve with RBFNN. (a) Position tracking curve. (b) Position tracking error.

    图 8  机载环境下的跟踪曲线和跟踪误差. (a)位置跟踪曲线. (b)跟踪误差.

    Figure 8.  Tracking curve and tracking error of proposed method in airborne environment. (a) Position tracking curve. (b) Position tracking error.

    表 1  机载光电平台模型参数

    Table 1.  Parameters of airborne opto-electronic platform.

    Parameter Value
    Pitch channel Me/(kgm2) 0.0314
    Pitch channel Fv /(N·m·s/rad) 0.0023
    Yaw channel Me/(kg·m2) 0.4286
    Yaw channel Fv/(N·m·s/rad) 0.0055
    Parameters ${\hat a_1} $ 0.5
    Parameters ${\hat a_2} $ 2
    下载: 导出CSV
  • [1]

    高文. 机载光电平台目标跟踪技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2012.

    Gao Wen. Research on the target tracking application to photoelectricity platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2012.

    [2]

    Mei Y, Zhao H Y, Guo S Y. The analysis of image stabilization technology based on small-UAV airborne video[C]// Proceedings of 2012 IEEE International Conference on Computer Science and Electronics Engineering, 2012: 586-589.

    [3]

    邱宝梅, 万吉权, 王建文.机载摄影稳定平台的自抗扰控制[J].光电工程, 2012, 39(4): 21-26. http://d.old.wanfangdata.com.cn/Periodical/gdgc201204004

    Qiu Baomei, Wan Jiquan, Wang Jianwen. Active disturbance rejection controller of the aerial photography stabilized platform[J]. Opto-Electronic Engineering, 2012, 39(4): 21-26. http://d.old.wanfangdata.com.cn/Periodical/gdgc201204004

    [4]

    王日俊. 多旋翼无人飞行器载荷稳像技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2015.

    Wang Rijun. Study on image stabilization technology for the payload of mUAV[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.

    [5]

    Chen W H, Yang J, Guo L, et al. Disturbance-observer-based control and related methods: an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083-1095. doi: 10.1109/TIE.2015.2478397 http://cn.bing.com/academic/profile?id=34d164243c1e1eb7dc494e765e8efe8b&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    任彦, 刘正华, 周锐.滑模干扰观测器在低速光电跟踪系统中的应用[J].北京航空航天大学学报, 2013, 39(6): 835-840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201306024

    Ren Yan, Liu Zhenghua, Zhou Rui. Application of low speed opto-electronic tracking systems based on sliding mode disturbance observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(6): 835-840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjhkhtdxxb201306024

    [7]

    Lee M H, Park H G, Lee W B, et al. On the design of a disturbance observer for moving target tracking of an autonomous surveillance robot[J]. International Journal of Control, Automation and Systems, 2012, 10(1): 117-125. doi: 10.1007/s12555-012-0113-2 https://link.springer.com/article/10.1007/s12555-012-0113-2

    [8]

    李嘉全, 丁策, 孔德杰, 等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程, 2011, 19(5): 998-1004. https://www.wenkuxiazai.com/doc/4dc9f515a300a6c30c229fae.html

    Li Jiaquan, Ding Ce, Kong Dejie, et al. Velocity based disturbance observer and its application to photoelectric stabilized platform[J]. Optics and Precision Engineering, 2011, 19(5): 998-1004. https://www.wenkuxiazai.com/doc/4dc9f515a300a6c30c229fae.html

    [9]

    谢巍, 何忠亮.采用改进型扰动观测器的控制方法[J].控制理论与应用, 2010, 27(6): 695-700. https://www.wenkuxiazai.com/doc/55c5876d7e21af45b307a88d.html

    Xie Wei, He Zhongliang. Control method with improved disturbance observer[J]. Control Theory and Applications, 2010, 27(6): 695-700. https://www.wenkuxiazai.com/doc/55c5876d7e21af45b307a88d.html

    [10]

    王日俊, 白越, 续志军, 等.基于扰动观测器的多旋翼无人机机载云台模糊自适应跟踪控制[J].浙江大学学报(工学版), 2015, 49(10): 2005-2012. http://www.cnki.com.cn/Article/CJFDTotal-ZDZC201510028.htm

    Wang Rijun, Bai Yue, Xu Zhijun, et al. Fuzzy self-adjusting tracking control based on disturbance observer for airborne platform mounted on multi-rotor unmanned aerial vehicle[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(10): 2005-2012. http://www.cnki.com.cn/Article/CJFDTotal-ZDZC201510028.htm

    [11]

    朱海荣, 李奇, 顾菊平, 等.扰动补偿的陀螺稳定平台单神经元自适应PI控制[J].电机与控制学报, 2012, 16(3): 65-70, 77. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_djykzxb201203011

    Zhu Hairong, Li Qi, Gu Juping, et al. Single-neuron adaptive PI control of the gyrostabilized platform based on disturbance compensation[J]. Electric Machines and Control, 2012, 16(3): 65-70, 77. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_djykzxb201203011

    [12]

    Khalil H K. Nonlinear system[M]. 3rd edition. New Jersey: Prentice Hall, 2002: 24.

    [13]

    扈宏杰, 王元哲.机载光电平台的复合补偿控制方法[J].光学精密工程, 2012, 20(6): 1272-1281. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201206017

    Hu Hongjie, Wang Yuanzhe. Composite compensation control scheme for airborne opto-electronic platform[J]. Optics and Precision Engineering, 2012, 20(6): 1272-1281. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201206017

  • 加载中

(8)

(1)

计量
  • 文章访问数:  6681
  • PDF下载数:  2725
  • 施引文献:  0
出版历程
收稿日期:  2017-06-09
修回日期:  2017-07-22
刊出日期:  2017-10-15

目录

/

返回文章
返回