非正交光栅莫尔信号数字细分方法与实现

叶树亮, 许莹琨, 朱维斌. 非正交光栅莫尔信号数字细分方法与实现[J]. 光电工程, 2017, 44(9): 903-911. doi: 10.3969/j.issn.1003-501X.2017.09.007
引用本文: 叶树亮, 许莹琨, 朱维斌. 非正交光栅莫尔信号数字细分方法与实现[J]. 光电工程, 2017, 44(9): 903-911. doi: 10.3969/j.issn.1003-501X.2017.09.007
Ye Shuliang, Xu Yingkun, Zhu Weibin. Digital subdividing method and realization for non-orthogonal grating moiré signals[J]. Opto-Electronic Engineering, 2017, 44(9): 903-911. doi: 10.3969/j.issn.1003-501X.2017.09.007
Citation: Ye Shuliang, Xu Yingkun, Zhu Weibin. Digital subdividing method and realization for non-orthogonal grating moiré signals[J]. Opto-Electronic Engineering, 2017, 44(9): 903-911. doi: 10.3969/j.issn.1003-501X.2017.09.007

非正交光栅莫尔信号数字细分方法与实现

  • 基金项目:
    2017年国家质量基础的共性技术研究与应用重点专项(2017YFF0204900)
详细信息

Digital subdividing method and realization for non-orthogonal grating moiré signals

  • Fund Project:
More Information
  • 本文对非正交光栅莫尔信号细分方法展开研究,提出了基于信号采集、预处理和细分架构的非正交光栅莫尔信号数字细分的方案,在FPGA平台上完成32 512倍信号细分。针对电路系统中信号幅值比和采样率参数进行分析,建立了莫尔信号幅值偏差的数学模型,明确信号幅值比k与周期细分数N的量化关系,实验证明,信号幅值偏差补偿要求随细分值增加而逐渐增高。建立了信号频率/采样率的数学模型,明确信号频率与采样率之比f/fs与周期细分数N的量化关系,实验证明,信号频率与采样率之比随细分值增加而逐渐降低。

  • Abstract: Grating is a kind of photoelectric sensor which is widely used in defense technology, industrial production and social life. In order to improve the measuring resolution, subdivision is used to deal with the grating moiré signals. Traditional subdivision methods such as phase-shifting resistance chain method, lock phase frequency method, carrier modulation method, amplitude segmentation method, etc., all require that the two signals output by the grating reading head are strictly orthogonal.

    Actually, because of the influence of the precision of the grating and the adjustment error, the two signals usually cannot be completely orthogonal, and the phase difference is fluctuant. Therefore, the non-orthogonal deviation of grating moiré signal is a key factor affecting grating measurement accuracy. A subdividing method for non-orthogonal grating moiré signals is studied, and a circuit scheme of the non-orthogonal grating moiré signal digital subdividing system is proposed to complete 32~512 times signal subdivision on the FPGA platform.

    In the process of subdivision, the amplitude of the two grating signals is collected to determine whether the interval of the signal sampling point is changed, and the dynamic tracking of the intersection of the signal amplitude is realized. And then according to the amplitude of the starting point and the end point of the measurement signal, the corresponding phase points are calculated and the interval is recorded. Combining the intersection of two signals, the phase change can be calculated.

    Targeted to signal amplitude ratio and sampling rate parameters in the circuit system, mathematical modeling and quantitative analysis were performed, and the validity of the model was demonstrated by experiment. The results of the study are as following.

    1) A circuit realization scheme based on signal collection, pre-processing and subdivision is presented, and the formulas for calculating the phase changing capacity of non-orthogonal grating moiré signals are given.

    2) A model of signal amplitude deviance is constructed, and the quantitative relation is established between signal amplitude ratio k and subdivision value N. Test results suggest that required compensation for signal amplitude deviance becomes higher steadily when the subdivision value N grows.

    3) A model of signal frequency/sampling frequency is constructed, and the quantitative relation is established between the quotient of signal frequency and sampling frequency f/fs and subdivision value N. Test results suggest that required sampling frequency becomes lower steadily when the subdivision value N grows.

    Proved by experiment, the method has good adaptability to the non-orthogonal deviation in the actual working condition. The study results have guiding significance and reference value on design and realization of the grating moiré signal subdividing system.

  • 加载中
  • 图 1  数字式光栅莫尔信号细分系统流程图.

    Figure 1.  Subdividing system flowchart of digital grating moiré signal.

    图 2  非正交光栅莫尔信号细分系统流程图.

    Figure 2.  Subdividing system flowchart of non-orthogonal grating moiré signal.

    图 3  非正交莫尔信号绝对值波形示意图.

    Figure 3.  Absolute value waveform diagram of Non-orthogonal moiré signal.

    图 4  非正交莫尔信号理论幅值和实际幅值示意图.

    Figure 4.  Theoretical amplitude and actual amplitude of Non-orthogonal moiré signal diagram.

    图 5  采样率与信号交点幅值关系示意图.

    Figure 5.  Sampling rate and signal intersection point amplitude relationship diagram.

    图 6  非正交光栅莫尔信号细分系统平台.

    Figure 6.  Subdividing system platform of non-orthogonal grating moiré signal.

    图 7  不同φ工况下Nk的关系. (a) φ=0°. (b) φ=1°. (c) φ=3°. (d) φ=5°.

    Figure 7.  The relationship between N and k under different φ conditions. (a) φ=0°. (b) φ=1°. (c) φ=3°. (d) φ=5°.

    图 8  不同φ工况下Nf/fs的关系. (a) φ=0°. (b) φ=1°. (c) φ=3°. (d) φ=5°.

    Figure 8.  The relationship between N and f/fs under different φ conditions. (a) φ=0°. (b) φ=1°. (c) φ=3°. (d) φ=5°.

    表 1  非正交莫尔信号相位变化量计算公式.

    Table 1.  Non-orthogonal moiré signals phase variation calculating formula.

    i =1 or 5 i =3 or 7 i =2 or 6 i =4 or 8
    j=i+0 θ=-θs+2θ1-θt θ=-θs+2θ2-θt θ=θs+θt θ=θs+θt
    j=i+1 θ=-θs+2θ1+θt θ=-θs+2θ2+θt θ=θs+2θ1-θt θ=θs+2θ2-θt
    j=i+2 θ=-θs+2θ1+2θ2-θt θ=-θs+2θ1+2θ2-θt θ=θs+2θ1+θt θ=θs+2θ2+θt
    j=i+3 θ=-θs+2θ1+2θ2+θt θ=-θs+2θ1+2θ2+θt θ=θs+2θ1+2θ2-θt θ=θs+2θ1+2θ2-θt
    j=i+4 θ=-θs+4θ1+2θ2-θt θ=-θs+2θ1+4θ2-θt θ=θs+2θ1+2θ2+θt θ=θs+2θ1+2θ2+θt
    j=i+5 θ=-θs+4θ1+2θ2+θt θ=-θs+2θ1+4θ2+θt θ=θs+2θ1+4θ2-θt θ=θs+4θ1+2θ2-θt
    j=i+6 θ=-θs+4θ1+4θ2-θt θ=-θs+4θ1+4θ2-θt θ=θs+2θ1+4θ2+θt θ=θs+4θ1+2θ2-θt
    j=i+7 θ=-θs+4θ1+4θ2+θt θ=-θs+4θ1+4θ2+θt θ=θs+4θ1+4θ2-θt θ=θs+4θ1+4θ2-θt
    下载: 导出CSV

    表 2  实验平台参数.

    Table 2.  Parameters of the experiment platform.

    FPGAAD9653RIGOL DG4162
    Series:ALTERA cyclone ⅣWidth:16 bitAccuracy:±2×10-6
    Sampling frequency:80 MHz
    下载: 导出CSV
  • [1]

    何安国, 喻洪麟, 朱传新, 等.光栅莫尔条纹细分及辨向方法研究[J].光电工程, 2007, 34(10): 45–49. doi: 10.3969/j.issn.1003-501X.2007.10.009

    He Anguo, Yu Honglin, Zhu Chuanxin, et al. Subdivision and direction judgment of grating Moiré fringes[J]. Opto-Electronic Engineering, 2007, 34(10): 45–49. doi: 10.3969/j.issn.1003-501X.2007.10.009

    [2]

    郭雨梅, 崔晋玲, 刘雪艳, 等.锁相式莫尔条纹信号细分方法[J].哈尔滨工业大学学报, 2007, 39(9): 1496–1498, 1512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb200709036

    Guo Yumei, Cui Jinling, Liu Xueyan, et al. Interpolation method of phase-locking Moire fringe[J]. Journal of Harbin Institute of Technology, 2007, 39(9): 1496–1498, 1512. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgydxxb200709036

    [3]

    李怀琼, 陈钱, 庄小栋.新型光栅信号数字细分技术及其误差分析[J].电子测量与仪器学报, 2001, 15(3): 71–75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlxb98200104010

    Li Huaiqiong, Chen Qian, Zhuang Xiaodong. A new digital subdividing technique for grating signal and its error analysis[J]. Journal of Electronic Measurement and Instrument, 2001, 15(3): 71–75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlxb98200104010

    [4]

    李洪, 冯长有, 丁林辉.光电轴角编码器细分误差动态评估方法[J].传感技术学报, 2005, 18(4): 927–930. http://d.wanfangdata.com.cn/Periodical_cgjsxb200504062.aspx

    Li Hong, Feng Changyou, Ding Linhui. Dynamic evaluation method for interpolation errors in photoelectric encoder[J]. Chinese Journal of Sensors and Actuators, 2005, 18(4): 927–930. http://d.wanfangdata.com.cn/Periodical_cgjsxb200504062.aspx

    [5]

    王显军.光电轴角编码器细分信号误差及精度分析[J].光学精密工程, 2012, 20(2): 379–386. http://www.opticsjournal.net/abstract.htm?id=OJ120306000085iOkRnU

    Wang Xianjun. Errors and precision analysis of subdivision signals for photoelectric angle encoders[J]. Optics and Precision Engineering, 2012, 20(2): 379–386. http://www.opticsjournal.net/abstract.htm?id=OJ120306000085iOkRnU

    [6]

    Heydemann P L M. Determination and correction of quadrature fringe measurement errors in interferometers[J]. Applied Optics, 1981, 20(19): 3382–3384. doi: 10.1364/AO.20.003382

    [7]

    Okazaki T. Predistortion amplifier for compensation distortion: 7414470[P]. 2008-08-19.

    [8]

    Warner M, Krabbendam V, Schumacher G. Adaptive periodic error correction for Heidenhain tape encoders[J]. Proceedings of SPIE, 2008, 7012: 70123N. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/7012/1/Adaptive-periodic-error-correction-for-Heidenhain-tape-encoders/10.1117/12.787462.full

    [9]

    罗刚, 熊文卓.光电轴角编码器光电信号正交偏差的测量和补偿方法[J].传感技术学报, 2008, 21(11): 1853–1857. doi: 10.3969/j.issn.1004-1699.2008.11.009

    Luo Gang, Xiong Wenzhuo. A method to measure and offset quartering deviation of encoder[J]. Chinese Journal of Sensors and Actuators, 2008, 21(11): 1853–1857. doi: 10.3969/j.issn.1004-1699.2008.11.009

    [10]

    高旭, 万秋华, 赵长海, 等.莫尔条纹光电信号正交性偏差的实时补偿[J].光学精密工程, 2014, 22(1): 213–219. http://www.opticsjournal.net/abstract.htm?id=OJ140218000377z6C9Eb

    Gao Xu, Wan Qiuhua, Zhao Changhai, et al. Real-time com-pensation of orthogonality deviation for Moire fringe photoelectric signal[J]. Optics and Precision Engineering, 2014, 22(1): 213–219. http://www.opticsjournal.net/abstract.htm?id=OJ140218000377z6C9Eb

    [11]

    叶树亮, 张潜, 朱维斌.光栅莫尔信号正交误差实时补偿研究[J].仪器仪表学报, 2017, 38(1): 57–64. http://www.opticsjournal.net/abstract.htm?id=OJ140218000377z6C9Eb

    Ye Shuliang, Zhang Qian, Zhu Weibin. Study on quadrature error real-time compensation for grating Moiré signal[J]. Chinese Journal of Scientific Instrument, 2017, 38(1): 57–64. http://www.opticsjournal.net/abstract.htm?id=OJ140218000377z6C9Eb

    [12]

    楚兴春, 吕海宝, 杜列波, 等.任意相位差条纹信号细分方法的研究[J].光学学报, 2005, 25(4): 497–500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200504013

    Chu Xingchun, Lv Haibao, Du Liebo, et al. Research on subdividing method for random phase difference fringe signals[J]. Acta Optica Sinica, 2005, 25(4): 497–500. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb200504013

    [13]

    吕孟军. 光栅莫尔条纹电子学细分技术研究[D]. 南京: 南京航空航天大学, 2008: 24–32.

    Lv Mengjun. Study on electronic subdivision of grating Moiré Fringe[D]. Nanjing: Nanjing University of Aeronautics and As-tronautics, 2008: 24–32.http://cdmd.cnki.com.cn/Article/CDMD-10287-2009054547.htm

    [14]

    卢少武, 唐小琦, 马泽龙, 等. ORDIC算法在光栅莫尔条纹细分中的应用[J].自动化仪表, 2010, 31(5): 23–25. https://www.wenkuxiazai.com/doc/4de9b0cf71fe910ef12df8ca-2.html

    Lu Shaowu, Tang Xiaoqi, Ma Zelong, et al. Application of CORDIC algorithm in subdivision of grating Moiré fringe[J]. Process Automation Instrumentation, 2010, 31(5): 23–25. https://www.wenkuxiazai.com/doc/4de9b0cf71fe910ef12df8ca-2.html

    [15]

    Vandenbussche J J, Lee P, Peuteman J. On the accuracy of digital phase sensitive detectors implemented in FPGA tech-nology[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(8): 1926–1936. doi: 10.1109/TIM.2014.2303257

    [16]

    王晓娜, 钟玉龙, 朱维斌, 等.光栅数字细分的CORDIC算法总量化误差分析[J].计量学报, 2016, 37(1): 10–14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlxb98201601003

    Wang Xiaona, Zhong Yulong, Zhu Weibin, et al. Analysis of the overall quantization error for CORDIC algorithm in grating digital subdivision[J]. Acta Metrologica Sinica, 2016, 37(1): 10–14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jlxb98201601003

    [17]

    李江国, 宣明, 王一凡.莫尔条纹细分中相位误差的软件补偿方法[J].光学精密工程, 1995, 3(1): 69–73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm501.012&dbname=CJFD&dbcode=CJFQ

    Li Jiangguo, Xuan Ming, Wang Yifan. Software compensation method of phase error in Morié strip division[J]. Optics and Precision Engineering, 1995, 3(1): 69–73. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxjm501.012&dbname=CJFD&dbcode=CJFQ

    [18]

    余文新, 胡小唐, 邹自强.一种高分辨率和高频响的光栅纳米测量细分方法[J].天津大学学报, 2002, 35(1): 1–4. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_tianjdxxb200201001

    Yu Wenxin, Hu Xiaotang, Zou Ziqiang. A subdivision method with high resolution and high response speed in grating-based nanometrology[J]. Journal of Tianjin University, 2002, 35(1): 1–4. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_tianjdxxb200201001

  • 加载中

(8)

(2)

计量
  • 文章访问数:  6981
  • PDF下载数:  3022
  • 施引文献:  0
出版历程
收稿日期:  2017-05-04
修回日期:  2017-07-24
刊出日期:  2017-09-15

目录

/

返回文章
返回