Ying Lu, Jibin Zhao, Hongchao Qiao. The laser shock processing control system[J]. Opto-Electronic Engineering, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010
Citation: Ying Lu, Jibin Zhao, Hongchao Qiao. The laser shock processing control system[J]. Opto-Electronic Engineering, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010

The laser shock processing control system

    Fund Project:
More Information
  • This paper introduced control system for complex curved surface laser shock processing, which was a set of automatic and digital control system operation, and controlled by the industrial PC/PLC. And it completed the real-time online monitoring and information interaction feedback, belonging to the open distributed system, by the fact that the remote monitoring and control system status of processing effectively avoid the occurrence of major accidents. This system was laser shock processing core device (including laser, robot, auxiliary control, quality testing device and auxiliary system, etc.), that implemented each link of information interaction and systems work together. By the remote monitoring, control system status of processing effectively avoided the occurrence of major accidents. At the same time, the control system added process of laser shock processing test data record function. According to actual demand parameters database called the background, parameter optimization was processed effectively. In addition, the system also could realize laser shock processing model established in this paper, complex surface machining trajectory planning automatically and processing strategy. The system can realize the automatic production of the whole blade laser impact of aero engine, and it is already in the engineering application stage.
  • 加载中
  • [1] Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J]. Acta Materialia, 2004, 52(20): 5771-5782. doi: 10.1016/j.actamat.2004.08.031

    CrossRef Google Scholar

    [2] Spanrad S, Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens[J]. Materials Science and Engineering: A, 2011, 528(4-5): 2128-2136. doi: 10.1016/j.msea.2010.11.045

    CrossRef Google Scholar

    [3] See D W, Dulaney J L, Clauer A H, et al. The air force manufacturing technology laser peening initiative[J]. Surface Engineering, 2002, 18(1): 32-36. doi: 10.1179/026708401225001264

    CrossRef Google Scholar

    [4] King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering: A, 2006, 435-436: 12-18. doi: 10.1016/j.msea.2006.07.020

    CrossRef Google Scholar

    [5] Zhou J Z, Huang S, Zuo L D, et al. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy[J]. Optics and Lasers in Engineering, 2014, 52: 189-194. doi: 10.1016/j.optlaseng.2013.06.011

    CrossRef Google Scholar

    [6] Ocaña J L, Morales M, García-Ballesteros J J, et al. Laser shock microforming of thin metal sheets[J]. Applied Surface Science, 2009, 255(10): 5633-5636. doi: 10.1016/j.apsusc.2008.10.084

    CrossRef Google Scholar

    [7] 李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19. doi: 10.3788/LOP20084512.0015

    CrossRef Google Scholar

    Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19. doi: 10.3788/LOP20084512.0015

    CrossRef Google Scholar

    [8] Sathyajith S, S Kalainathan. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser[J]. Optics and Lasers in Engineering, 2012, 50(3): 345-348. doi: 10.1016/j.optlaseng.2011.11.002

    CrossRef Google Scholar

    [9] 石朝阳, 刘赤荣, 应才苏. 激光冲击强化技术研究与应用现状[J]. 机械设计与制造, 2010, (4): 61-63. doi: 10.3969/j.issn.1001-3997.2010.04.025

    CrossRef Google Scholar

    Shi Chaoyang, Liu Chirong, Ying Caisu. Research and application of laser shock processing[J]. Machinery Design & Manufacture, 2010, (4): 61-63. doi: 10.3969/j.issn.1001-3997.2010.04.025

    CrossRef Google Scholar

    [10] Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75. doi: 10.1016/j.surfcoat.2014.05.015

    CrossRef Google Scholar

    [11] 聂祥樊, 何卫锋, 李启鹏, 等. 激光喷丸改善TC6钛合金组织和力学性能[J]. 强激光与粒子束, 2013, 25(5): 1115-1119. doi: 10.3788/HPLPB20132505.1115

    CrossRef Google Scholar

    Nie Xiangfan, He Weifeng, Li Qipeng, et al. Improvement of structure and mechanical properties of TC6 titanium alloy with laser shock peening[J]. High Power Laser and Particle Beams, 2013, 25(5): 1115-1119. doi: 10.3788/HPLPB20132505.1115

    CrossRef Google Scholar

    [12] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 1996, 210(1-2): 102-113. doi: 10.1016/0921-5093(95)10084-9

    CrossRef Google Scholar

    [13] Liu K K, Hill M R. The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons[J]. Tribology International, 2009, 42(9): 1250-1262. doi: 10.1016/j.triboint.2009.04.005

    CrossRef Google Scholar

    [14] DeWald A T, Rankin J E, Hill M R, et al. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening[J]. Journal of Engineering Materials and Technology, 2004, 126(4): 465-473. doi: 10.1115/1.1789957

    CrossRef Google Scholar

    [15] Montross C S, Wei Tao, Ye Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1

    CrossRef Google Scholar

    [16] Chai Lihua, Chen Yuyong, Zhang Laiqi, et al. Effect of spark plasma sintering temperature on microstructure and mechanical properties of melt-spun TiAl alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 528-533. doi: 10.1016/S1003-6326(11)61209-0

    CrossRef Google Scholar

    [17] 陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京: 国防工业出版社, 2002: 5-10.

    Google Scholar

    Tao Chunhu, Liu Qingquan, Cao Chunxiao, et al. Failure and prevention of aeronautical titanium alloyAerospace titanium alloys failure and its prevention[M]. Beijing: Defense Press, 2002: 5-10.

    Google Scholar

    [18] 胡太友, 乔红超, 赵吉宾, 等. 激光冲击强化设备的开发[J]. 光电工程, 2017, 44(7): 732-737. doi: 10.3969/j.issn.1003-501X.2017.07.010

    CrossRef Google Scholar

    Hu Taiyou, Qiao Hongchao, Zhao Jibin, et al. Develop of Laser Shock Peening Device[J]. Opto-Electronic Engineering, 2017, 44(7): 732-737. doi: 10.3969/j.issn.1003-501X.2017.07.010

    CrossRef Google Scholar

    [19] 李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    CrossRef Google Scholar

    Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Laser shock peening technology principle and research development[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(6427) PDF downloads(3043) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint