从超振荡透镜到超临界透镜:超越衍射极限的光场调制

秦飞, 李向平, 洪明辉. 从超振荡透镜到超临界透镜:超越衍射极限的光场调制[J]. 光电工程, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001
引用本文: 秦飞, 李向平, 洪明辉. 从超振荡透镜到超临界透镜:超越衍射极限的光场调制[J]. 光电工程, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001
Fei Qin, Xiangping Li, Minghui Hong. From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001
Citation: Fei Qin, Xiangping Li, Minghui Hong. From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001

从超振荡透镜到超临界透镜:超越衍射极限的光场调制

  • 基金项目:
    国家自然科学基金资助项目(61522504;61705085)
详细信息

From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation

  • Fund Project:
More Information
  • 以超振荡透镜和超临界透镜为典型代表的平面超透镜是一种利用光场调控方式实现远场超衍射极限聚焦和成像的光学元件。通过精密调控各衍射结构单元之间的干涉效应,可以在焦平面上局部区域内获得高于系统最高空间频率的电场振荡,从而实现对衍射焦斑横向和轴向尺寸的可控调节。与传统的光学透镜相比,平面超透镜具有聚焦能力强,结构紧凑,设计自由度大,利于集成等优点。因其远场超衍射极限的光场调控能力,受到衍射光学和纳米光子学领域人员的广泛关注和研究。本文介绍了平面超衍射极限透镜光场调控的原理和设计方法。对超振荡透镜和超临界透镜的研究现状及其在远场光学超分辨成像领域的应用进行了分析和讨论,最后对该领域面临的问题及其拓展方向作了展望。

  • Improving the imaging resolution has always been one of the most important topics since the invention of optical microscope. Due to the fundamental laws of wave optics, the focusing and imaging resolution of traditional refraction and diffraction lenses are subject to the Rayleigh Criterion (0.61λ/NA), and the spatial resolution of optical microscopy is restricted to ~200 nm at visible light. Tremendous efforts have been made to fight against the diffraction limit in the past decades, and several novel approaches have been invented which could be categorized as near-field and far-field modes. For the near-field techniques, such as NSOM, superlens, hyperlens, microsphere lens, they always suffer from the challenges of near-field operation and small field of view, which make them not meet some requirements of practical applications. Although very high imaging resolution in far-field could be achieved by the fluorescence-based approaches, all these techniques have a common feature that is quite limited to biological domain because of the requirement to put dyes and fluorescence into objects. Therefore, the label-free technique for super-resolution imaging in far field is very important for general applications. Recent advance in this field is the development of planar metalens which could achieve sub-diffractive focusing and imaging in far field by means of light field modulation. Super-oscillatory lens (SOL) and super-critical lens (SCL) are the typical representatives of planar metalens. Through precisely modulating the interference effect of each diffractive unit, the focal spot size in a certain region of the target plane is controllable in lateral and longitudinal directions. Combined with the confocal technique, the label-free superresolution imaging could be realized in far field with purely non-invasive manners. Compared with the traditional optical lens, the planar metalens is much more attractive due to its distinct advantages of powerful focusing capabilities, compact configuration, higher design freedom and the integratable properties, etc. In this review, we briefly introduce the field modulation mechanism and design principle of the planar metalens. The research progress of the super-oscillatory lens and super-critical lens, as well as their applications in far-field label-free super-resolution imaging, is presented in detail. The advantages and limitations of that planar lens are compared and briefly discussed. A perspective about the future outlook of planar metalens is summarized. Since the planar metalens has a powerful capability in manipulating the light field, the rapid development in various applications would be gradually realized in the near future.

  • 加载中
  • 图 1  典型光学超分辨成像技术及其分辨率对比[4].

    Figure 1.  Comparison between typical optical super-resolution techniques and their corresponding imaging resolutions[4].

    图 2  平面衍射透镜聚焦光斑尺寸被瑞利判据(0.61λ/NA)和超振荡判据(0.38λ/NA)分成亚分辨、超分辨和超振荡三个区域,分别对应图中的橙色、天蓝色和蓝紫色三个部分;右侧插图为各个区域所对应的典型光斑强度分布示意图[85].

    Figure 2.  The focal spot size of planar diffractive lens could be divided into three parts by Rayleigh (black) and super-oscillation (white) criterions, including sub-resolved (orange), super-resolution (cyan) and super-oscillation (dark blue). The insets in the right side are the field distributions of the focal spots for three typical diffractive lenses[85].

    图 3  不同宽度和数值孔径的单个环带在固定焦平面上(z=20λ)的衍射效应. (a)半径r0、宽度△r的单环衍射示意图. (b)单环带在焦平面上的聚焦特性和零阶贝塞尔函数的均方根差与单环宽度和半径的关系. (c), (d)对应于图(b)中的AB两点的单环衍射一维强度分布与零阶贝塞尔函数的对比. (e)强度调制系数与环带宽度和数值孔径的关系[85].

    Figure 3.  The diffraction effect at a certain plane(z=20λ) for a single belt with different widths and numerical apertures. (a) Illustration of the diffraction effect of a single belt with its radius r0 and width △r. (b) Root-mean-square error (RMSE) between the diffracting intensity at the target plane and its corresponding zero-order Bessel function for different widths and radius of a single belt. (c), (d) The line profiles of the diffraction intensities at the positions A and B in Fig. 3(b), with its corresponding zero-order Bessel function with the same numerical apertures. (e) The dependence of the amplitude modulation coefficient on the width and radius of the single belt[85].

    图 4  (a) 纳米孔阵的远场超衍射极限聚焦效应示意图. (b)超振荡效应产生大于频谱最高傅里叶分量的电场振荡. (c)由准周期纳米孔阵衍射产生的亚波长超振荡焦斑实验图[82].

    Figure 4.  (a) Generation of a sub-diffractive hotspot by nanoholes array in an opaque screen. (b) The comparison between the super-oscillating functions with its highest harmonic fourier component. (c) The experimental results of the subwavelength super-oscillating focal spot by a quasi-periodical holes array[82].

    图 5  (a) 超振荡光场调制示意图. (b)产生亚波长焦斑的掩模的强度和相位分布曲线. (c)等离子体超振荡透镜的可行结构[79].

    Figure 5.  (a) Schematic of the optical super-oscillation effect. (b) The intensity and phase profile of a transmission mask which could generate a subwavelength hotspot. (c) A possible configuration of a plasmonic focusing device for creating super-oscillation hotspot[79].

    图 6  (a) 超振荡显微成像系统照片. (b)超振荡透镜SEM图像. (c)工作波长在640 nm的超振荡透镜在10.3 μm工作距离上的聚焦能量分布模拟结果. (d)实验测得到半高全宽为185 nm的超衍射极限焦斑. (e)用于测试成像能力的孔阵样品SEM图. (f)利用超振荡透镜显微成像系统对孔阵结构成像效果模拟图. (g)超振荡透镜显微系统成像实验结果[74, 80].

    Figure 6.  (a) Photograph of the super-oscillatory microscope. (b) SEM image of the fabricated SOL. (c) The simulated energy distribution for the 640 nm wavelength SOL at the distance of 10.3 μm away from the lens plane. (d) Experimental focal spot with a FWHM of 185 nm. (e) SEM image of a hole array sample. (f) Simulated imaging result of the hole array sample by the SOL microscopy. (g) Experimental imaging result by the SOL microscopy[74, 80].

    图 7  工作波长在633 nm的超临界透镜对涡旋相位叠加的角向偏振光的聚焦效应. (a)在150 μm工作距离上的聚焦能力模拟图. (b)实验记录的焦斑强度分布. (c)模拟和实验结果的一维强度对比图. (d)聚焦光针的模拟结果. (e)光针强度分布的实验结果. (f)在传播距离为140 μm~160 μm的区域内的焦斑半高全宽变化趋势的理论和实验对比[91].

    Figure 7.  Focusing effect of the 633 nm super-critical lens induced by the azimuthally polarized beam with vorticle phase. (a) Simulated energy distribution at the focal plane of z=150 μm. (b) Experimental recorded focal spot pattern. (c) Line profile of the intensity distribution for the simulated and measured focal spot. (d), (e) Simulated and experimental recorded optical needle formed in the range from z=140 μm~160 μm. (f) FWHM of the optical needle along the propagation direction[91].

    图 8  (a), (b)平面超临界透镜在角向偏振光激发下远场产生光学空洞的理论和实验结果. (c)光学空洞模拟和实验结果的一维强度对比图. (d)光学空洞的偏振特性表征[91].

    Figure 8.  (a), (b) The simulated and measured optical hollows created by the 633 nm SCL induced by azimuthally polarized beam. (c) Line profile of the intensity across the focal spot for the simulated and measured results. (d) Characterization of the polarized property of the optical hollow[91].

    图 9  (a) 405 nm超临界透镜的结构示意图. (b)加工得到的超临界透镜SEM图. (c)超衍射极限聚焦特性的理论和实验对比. (d)实验测得的亚波长聚焦光针[87].

    Figure 9.  (a) Schematic configuration of the 405 nm supercritical lens. (b) SEM image of the fabricated 405 nm SCL. Inset is the zoom-in view of the dashed box region. (c) Line profile of the sub-diffractive focal spot under illumination of 405 nm circular polarized beam. (d) Experimental recorded intensity distribution of the sub-wavelength optical needle[87].

    图 10  (a) 超临界透镜成像原理示意图. (b)超临界透镜显微成像系统实物照片. (c)纳米尺度北斗七星孔阵待成像样品SEM图. (d)常规透射式显微镜成像结果. (e)激光共聚焦显微镜的成像结果. (f)超临界透镜显微成像系统对样品的成像结果[87].

    Figure 10.  (a) Schematic of the SCL microscopy. (b) The photograph of the SCL microscope system. (c) SEM of the nanoscale big dipper as the imaging specimen. (d) Imaging result by the normal transmission-mode microscopy. (e) Imaging results by the laser scanning confocal microscopy. (f) Imaging result by the 405 nm SCL microscopy[87].

    图 11  超临界显微成像系统对大尺寸非周期结构的成像能力,(a), (c)样品SEM图样. (b), (d)利用超临界显微成像系统扫描所成的超分辨图像[87].

    Figure 11.  Large-scale non-periodic patterns imaged by the supercritical lens microscopy. (a), (c) The SEM images of fabricated samples with a size of 13.5 μm × 13.5 μm. (b), (d) The imaging results by the supercritical lens microscope[87].

    图 12  (a) 二元相位型平面超透镜结构示意图. (b1)~(b3)在径向偏振光激发下产生超衍射极限焦斑. (c1)~(c3)在角向偏振光激发下产生亚波长光学空洞[105, 106].

    Figure 12.  (a) Schematic of the binary phase planar metalens. (b1)~(b3) Sub-diffractive focusing by the binary phase planar metalens under illumination of radial polarized beam. (c1)~(c3) Shaping subwavelength optical hollow with the binary phase planar metalens induced by azimuthally polarized beam[105, 106].

    图 13  三种典型的平面衍射透镜性能对比图.其中FZP, SOL和SCL分别指菲涅尔波带片,超振荡透镜和超临界透镜.

    Figure 13.  Quality indices of three types of planar metalens. FZP, SOL and SCL refer to the fresnel zone plate, superoscillatory lens and supercritical lens, respectively.

  • [1]

    Abbe E. A contribution to the theory of the microscope and the nature of microscopic vision[C]//Proceedings of the Bristol Naturalists' Society, 1874, 1: 200-261.

    [2]

    Lord Rayleigh F R S. XII. On the manufacture and theory of diffraction-gratings[J]. Philosophical Magazine, 1874, 47(310): 81-93. http://arch.neicon.ru/xmlui/handle/123456789/1622896

    [3]

    Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283-291. http://adsabs.harvard.edu/abs/1835TCaPS...5..283A

    [4]

    Hao Xiang, Kuang Cuifang, Gu Zhaotai, et al. From microscopy to nanoscopy via visible light[J]. Light Science & Applications, 2013, 2: e108. http://www.nature.com/lsa/journal/v2/n10/abs/lsa201364a.html

    [5]

    Schmidt D A, Kopf I, Bründermann E. A matter of scale: from far-field microscopy to near-field nanoscopy[J]. Laser & Photonics Reviews, 2012, 6(3): 296-332. http://onlinelibrary.wiley.com/doi/10.1002/lpor.201000037/full

    [6]

    Zeng Zhipeng, Xi Peng. Advances in three-dimensional super-resolution nanoscopy[J]. Microscopy Research and Technique, 2016, 79(10): 893-898. doi: 10.1002/jemt.v79.10

    [7]

    Hell S W. Toward fluorescence nanoscopy[J]. Nature Biotechnology, 2003, 21(11): 1347-1355. doi: 10.1038/nbt895

    [8]

    Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153-1158. doi: 10.1126/science.1137395

    [9]

    Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: apodization and near field diffraction structures[J]. Laser & Photonics Reviews, 2012, 6(3): 354-392. http://onlinelibrary.wiley.com/doi/10.1002/lpor.201100009/full

    [10]

    Xie Xiangsheng, Chen Yongzhu, Yang Ken, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 2014, 113(26): 263901. doi: 10.1103/PhysRevLett.113.263901

    [11]

    Yang Xusan, Xie Hao, Alonas E, et al. Mirror-enhanced super-resolution microscopy[J]. Light: Science & Applications, 2016, 5: e16134. http://www.nature.com/uidfinder/10.1038/lsa.2016.134

    [12]

    Wang Wenhui, Gu Junnan, He Ting, et al. Optical super-resolution microscopy and its applications in nano-catalysis[J]. Nano Research, 2015, 8(2): 441-455. doi: 10.1007/s12274-015-0709-y

    [13]

    Synge E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362. doi: 10.1080/14786440808564615

    [14]

    Betzig E, Lewis A, Harootunian A, et al. Near field scanning optical microscopy (NSOM)[J]. Biophysical Journal, 1986, 49(1): 269-279. doi: 10.1016/S0006-3495(86)83640-2

    [15]

    Bek A, Vogelgesang R, Kern K. Apertureless scanning near field optical microscope with sub-10nm resolution[J]. Review of Scientific Instruments, 2006, 77(4): 043703. doi: 10.1063/1.2190211

    [16]

    Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    [17]

    Liu Zhaowei, Durant S, Lee H, et al. Far-field optical superlens[J]. Nano Letters, 2007, 7(2): 403-408. doi: 10.1021/nl062635n

    [18]

    Zhang Xiang, Liu Zhaowei. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6): 435-441. doi: 10.1038/nmat2141

    [19]

    Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing[J]. Nature Photonics, 2009, 3(7): 388-394. doi: 10.1038/nphoton.2009.111

    [20]

    Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759

    [21]

    Taubner T, Korobkin D, Urzhumov Y, et al. Near-field micros-copy through a SiC superlens[J]. Science, 2006, 313(5793): 1595. doi: 10.1126/science.1131025

    [22]

    Wang Zengbo, Guo Wei, Li Lin, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. doi: 10.1038/ncomms1211

    [23]

    Yan Yinzhou, Li Lin, Feng Chao, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. doi: 10.1021/nn406201q

    [24]

    Allen K W, Farahi N, Li Yangcheng, et al. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis[J]. Annalen der Physik, 2015, 527(7-8): 513-522. doi: 10.1002/andp.v527.7-8

    [25]

    Lee S, Li Lin, Wang Zengbo, et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects[J]. Applied Optics, 2013, 52(30): 7265-7270. doi: 10.1364/AO.52.007265

    [26]

    Darafsheh A, Walsh G F, Dal Negro L, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. doi: 10.1063/1.4757600

    [27]

    Li Lin, Guo Wei, Yan Yinzhou, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2: e104. http://www.nature.com/lsa/journal/v2/n9/abs/lsa201360a.html

    [28]

    Yang Hui, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255

    [29]

    Allen K W, Farahi N, Li Yangcheng, et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by micro-spheres and microfibers[J]. Optics Express, 2015, 23(19): 24484-24496. doi: 10.1364/OE.23.024484

    [30]

    Wu M X, Huang B J, Chen R, et al. Modulation of photonic nanojets generated by microspheres decorated with concentric rings[J]. Optics Express, 2015, 23(15): 20096-20103. doi: 10.1364/OE.23.020096

    [31]

    Wu Mengxue, Chen Rui, Ling Jinzhong, et al. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere[J]. Optics Letters, 2017, 42(7): 1444-1447. doi: 10.1364/OL.42.001444

    [32]

    Fan Wen, Yan Bing, Wang Zengbo, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982708/

    [33]

    Li Jinxing, Liu Wenjuan, Li Tianlong, et al. Swimming microrobot optical nanoscopy[J]. Nano Letters, 2016, 16(10): 6604-6609. doi: 10.1021/acs.nanolett.6b03303

    [34]

    Luk'yanchuk B S, Paniagua-Domínguez R, Minin I, et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow[J]. Optical Materials Express, 2017, 7(6): 1820-1847. doi: 10.1364/OME.7.001820

    [35]

    Liu Hong, Wang Bing, Ke Lin, et al. High aspect subdiffraction-limit photolithography via a silver superlens[J]. Nano Letters, 2012, 12(3): 1549-1554. doi: 10.1021/nl2044088

    [36]

    Liu Hong, Wang Bing, Ke Lin, et al. High contrast superlens lithography engineered by loss reduction[J]. Advanced Functional Materials, 2012, 22(18): 3777-3783. doi: 10.1002/adfm.v22.18

    [37]

    Srituravanich W, Fang N, Sun Cheng, et al. Plasmonic nanolithography[J]. Nano Letters, 2004, 4(6): 1085-1088. doi: 10.1021/nl049573q

    [38]

    Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957-961. doi: 10.1021/nl0506094

    [39]

    Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780. doi: 10.1063/1.1760221

    [40]

    Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    [41]

    Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.x

    [42]

    Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi: 10.1073/pnas.0406877102

    [43]

    Allen J R, Ross S T, Davidson M W. Structured illumination microscopy for superresolution[J]. Chemphyschem, 2014, 15(4): 566-576. doi: 10.1002/cphc.201301086

    [44]

    Rust M J, Bates M, Zhuang Xiaowei. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi: 10.1038/nmeth929

    [45]

    Bates M, Huang Bo, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753. doi: 10.1126/science.1146598

    [46]

    Huang Bo, Wang Wenqin, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813. doi: 10.1126/science.1153529

    [47]

    Dempsey G T, Bates M, Kowtoniuk W E, et al. Photoswitching mechanism of cyanine dyes[J]. Journal of the American Chemical Society, 2009, 131(151): 18192-18193.

    [48]

    Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi: 10.1126/science.1127344

    [49]

    Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423. doi: 10.1038/nmeth.1202

    [50]

    Planchon T A, Gao Liang, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417-423. doi: 10.1038/nmeth.1586

    [51]

    Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780

    [52]

    Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939. doi: 10.1038/nature04592

    [53]

    Bretschneider S, Eggeling C, Hell S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007, 98(21): 218103. doi: 10.1103/PhysRevLett.98.218103

    [54]

    Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915-918. doi: 10.1038/nmeth1108

    [55]

    Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144-147. doi: 10.1038/nphoton.2009.2

    [56]

    Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204-208. doi: 10.1038/nature10497

    [57]

    Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068): 551. doi: 10.1126/science.1215369

    [58]

    Hanne J, Falk H J, Görlitz F, et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7127. doi: 10.1038/ncomms8127

    [59]

    Hell S W, Sahl S J, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 443001. doi: 10.1088/0022-3727/48/44/443001

    [60]

    Di Francia G T. Super-gain antennas and optical resolving power[J]. Nuovo Cimento, 1952, 9(S3): 426-438. doi: 10.1007/BF02903413

    [61]

    Liu Tao, Tan Jiubin, Liu Jian, et al. Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel[J]. Journal of Modern Optics, 2013, 60(5): 378-381. doi: 10.1080/09500340.2013.778343

    [62]

    Liu Tao, Shen Tong, Yang Shuming, et al. Subwavelength focusing by binary multi-annular plates: design theory and experiment[J]. Journal of Optics, 2015, 17(3): 035610. doi: 10.1088/2040-8978/17/3/035610

    [63]

    Liu Tao, Liu Jian, Zhang He, et al. Efficient optimization of super-oscillatory lens and transfer function analysis in confocal scanning microscopy[J]. Optics Communications, 2014, 319: 31-35. doi: 10.1016/j.optcom.2013.12.054

    [64]

    Sheppard C J R, Choudhury A. Annular pupils, radial polarization, and superresolution[J]. Applied Optics, 2004, 43(22): 4322-4327. doi: 10.1364/AO.43.004322

    [65]

    Davis B J, Karl W C, Swan A K, et al. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156. doi: 10.1364/OPEX.12.004150

    [66]

    Huang Kun, Li Yongping. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system[J]. Optics Letters, 2011, 36(18): 3536-3538. doi: 10.1364/OL.36.003536

    [67]

    Huang Kun, Shi Peng, Kang Xueliang, et al. Design of DOE for generating a needle of a strong longitudinally polarized field[J]. Optics Letters, 2010, 35(7): 965-967. doi: 10.1364/OL.35.000965

    [68]

    Wang Haifeng, Shi Luping, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505. doi: 10.1038/nphoton.2008.127

    [69]

    Berry M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(20): 205203. doi: 10.1088/1751-8113/46/20/205203

    [70]

    Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and Theoretical, 2006, 39(22): 6965-6977. doi: 10.1088/0305-4470/39/22/011

    [71]

    Huang Fumin, Zheludev N, Chen Yifang, et al. Focusing of light by a nanohole array[J]. Applied Physics Letters, 2007, 90(9): 091119. doi: 10.1063/1.2710775

    [72]

    Roy T, Rogers E T F, Yuan Guanghui, et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23): 231109. doi: 10.1063/1.4882246

    [73]

    Huang Fumin, Chen Yifang, de Abajo F J G, et al. Optical super-resolution through super-oscillations[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(9): S285-S288. doi: 10.1088/1464-4258/9/9/S01

    [74]

    Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008

    [75]

    Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108. doi: 10.1063/1.4774385

    [76]

    Yuan Guanghui, Rogers E T F, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light: Science & Applications, 2017, 6: e17036. https://arxiv.org/pdf/1701.06863

    [77]

    Yuan Guanghui, Vezzoli S, Altuzarra C, et al. Quantum super-oscillation of a single photon[J]. Light: Science & Applications, 2016, 5: e16127. http://www.nature.com/uidfinder/10.1038/lsa.2016.127

    [78]

    Huang Fumin, Kao T S, Fedotov V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472. doi: 10.1021/nl801476v

    [79]

    Huang Fumin, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249-1254. doi: 10.1021/nl9002014

    [80]

    Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280

    [81]

    Wang Qian, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2015, 10(1): 60-65. http://glearning.tju.edu.cn/pluginfile.php/79903/mod_forum/attachment/68304/Optically%20Reconfigurable%20Metadevices%20Based%20on%20Phase-Change%20Materials-natrue.pdf

    [82]

    Zheludev N I. What diffraction limit?[J]. Nature Materials, 2008, 7(6): 420-422. doi: 10.1038/nmat2163

    [83]

    Roy T, Rogers E T F, Zheludev N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577-7582. doi: 10.1364/OE.21.007577

    [84]

    Yuan Guanghui, Rogers E T F, Roy T, et al. Planar su-per-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4: 6333. http://pubmedcentralcanada.ca/pmcc/articles/PMC4160710/

    [85]

    Huang Kun, Ye Huapeng, Teng Jinghua, et al. Optimiza-tion-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152-157. http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300123/full

    [86]

    Ye Huapeng, Qiu Chengwei, Huang Kun, et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method[J]. Laser Physics Letters, 2013, 10(6): 065004. doi: 10.1088/1612-2011/10/6/065004

    [87]

    Qin Fei, Huang Kun, Wu Jianfeng, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721. doi: 10.1002/adma.201602721

    [88]

    Wang Jun, Qin Fei, Zhang Daohua, et al. Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate[J]. Applied Physics Letters, 2013, 102(6): 061103. doi: 10.1063/1.4791581

    [89]

    Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    [90]

    Qin Fei, Hong Minghui. Breaking the diffraction limit in far field by planar Metalens[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(4): 044231. https://www.researchgate.net/publication/313945353_Breaking_the_diffraction_limit_in_far_field_by_planar_metalens

    [91]

    Qin Fei, Huang Kun, Wu Jianfeng, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977. doi: 10.1038/srep09977

    [92]

    Wang Changtao, Tang Dongliang, Wang Yanqin, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5: 18485. http://www.nature.com/articles/srep18485

    [93]

    Richards B, Wolf E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379. doi: 10.1098/rspa.1959.0200

    [94]

    Lerman G M, Yanai A, Levy U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5): 2139-2143. doi: 10.1021/nl900694r

    [95]

    Wilson T, Massoumian F, Juškaitis R. Generation and focusing of radially polarized electric fields[J]. Optical Engineering, 2003, 42(11): 3088-3089. doi: 10.1117/1.1618816

    [96]

    Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bes-sel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888

    [97]

    Li Xiangping, Cao Yaoyu, Gu Min. Superresolution-focal-vol-ume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512. doi: 10.1364/OL.36.002510

    [98]

    Li Xiangping, Venugopalan P, Ren Haoran, et al. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam[J]. Optics Letters, 2014, 39(20): 5961-5964. doi: 10.1364/OL.39.005961

    [99]

    Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/AOP.1.000001

    [100]

    Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077

    [101]

    Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    [102]

    Liu Hong, Mehmood M Q, Huang Kun, et al. Twisted focusing of optical vortices with broadband flat spiral zone plates[J]. Advanced Optical Materials, 2014, 2(12): 1193-1198. doi: 10.1002/adom.201400315

    [103]

    Huang Kun, Liu Hong, Garcia-Vidal F J, et al. Ultra-high-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059. doi: 10.1038/ncomms8059

    [104]

    Wang Sicong, Li Xiangping, Zhou Jianying, et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Optics Letters, 2014, 39(17): 5022-5025. doi: 10.1364/OL.39.005022

    [105]

    Chen Gang, Wu Zhixiang, Yu Anping, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6: 37776. doi: 10.1038/srep37776

    [106]

    Yu Anping, Chen Gang, Zhang Zhihai, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859. doi: 10.1038/srep38859

    [107]

    Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    [108]

    Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Ad-vanced Optical Materials, 2016, 4(6): 818-833. doi: 10.1002/adom.v4.6

    [109]

    Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v

    [110]

    Devlin R C, Khorasaninejad M, Chen Weiting, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478. doi: 10.1073/pnas.1611740113

    [111]

    Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494

    [112]

    Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644

    [113]

    Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    [114]

    Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174-178. doi: 10.1016/j.optcom.2015.12.043

    [115]

    Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201. https://link.springer.com/article/10.1007/s11433-015-5688-1

    [116]

    Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    [117]

    Zhao Xiaonan, Hu Jingpei, Lin Yu, et al. Ultra-broadband achromatic imaging with diffractive photon sieves[J]. Scientific Reports, 2016, 6: 28319. doi: 10.1038/srep28319

  • 加载中

(13)

计量
  • 文章访问数:  11659
  • PDF下载数:  6246
  • 施引文献:  0
出版历程
收稿日期:  2017-05-04
修回日期:  2017-06-24
刊出日期:  2017-08-15

目录

/

返回文章
返回