Fei Qin, Xiangping Li, Minghui Hong. From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001
Citation: Fei Qin, Xiangping Li, Minghui Hong. From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757-771. doi: 10.3969/j.issn.1003-501X.2017.08.001

From super-osciallatory lens to super-critical lens: surpassing the diffraction limit via light field modulation

    Fund Project:
More Information
  • Super-oscillatory lens (SOL) and super-critical lens (SCL) are the typical representatives of planar metalens which could achieve sub-diffractive focusing and imaging in far field by means of light field modulation. Through precisely modulating the interference effect of each diffractive unit, the electromagnetic wave could be oscillated faster than its maximum frequency components in a certain region of the target plane, and then the focal spot size is controllable in lateral and longitudinal directions. Compared with the traditional optical lens, the planar metalens is much more attractive in the fields of diffractive optics and nanophotonics due to its distinct advantages of powerful focusing capabilities, compact configuration, higher design freedom and the integratable properties, etc. In this review, we briefly introduce the field modulation mechanism and design principle of planar metalens. The research advances of the super-oscillatory lens and super-critical lens, as well as their applications in far-field label-free super-resolution imaging, are discussed in detail. In addition, a perspective about the future outlook of planar metalens is summarized. Since the planar metalens has powerful capability in manipulating the light field, the rapid development in various applications would be gradually realized in the near future.
  • 加载中
  • [1] Abbe E. A contribution to the theory of the microscope and the nature of microscopic vision[C]//Proceedings of the Bristol Naturalists' Society, 1874, 1: 200-261.

    Google Scholar

    [2] Lord Rayleigh F R S. XII. On the manufacture and theory of diffraction-gratings[J]. Philosophical Magazine, 1874, 47(310): 81-93.

    Google Scholar

    [3] Airy G B. On the diffraction of an object-glass with circular aperture[J]. Transactions of the Cambridge Philosophical Society, 1835, 5: 283-291.

    Google Scholar

    [4] Hao Xiang, Kuang Cuifang, Gu Zhaotai, et al. From microscopy to nanoscopy via visible light[J]. Light Science & Applications, 2013, 2: e108.

    Google Scholar

    [5] Schmidt D A, Kopf I, Bründermann E. A matter of scale: from far-field microscopy to near-field nanoscopy[J]. Laser & Photonics Reviews, 2012, 6(3): 296-332.

    Google Scholar

    [6] Zeng Zhipeng, Xi Peng. Advances in three-dimensional super-resolution nanoscopy[J]. Microscopy Research and Technique, 2016, 79(10): 893-898. doi: 10.1002/jemt.v79.10

    CrossRef Google Scholar

    [7] Hell S W. Toward fluorescence nanoscopy[J]. Nature Biotechnology, 2003, 21(11): 1347-1355. doi: 10.1038/nbt895

    CrossRef Google Scholar

    [8] Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153-1158. doi: 10.1126/science.1137395

    CrossRef Google Scholar

    [9] Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: apodization and near field diffraction structures[J]. Laser & Photonics Reviews, 2012, 6(3): 354-392.

    Google Scholar

    [10] Xie Xiangsheng, Chen Yongzhu, Yang Ken, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 2014, 113(26): 263901. doi: 10.1103/PhysRevLett.113.263901

    CrossRef Google Scholar

    [11] Yang Xusan, Xie Hao, Alonas E, et al. Mirror-enhanced super-resolution microscopy[J]. Light: Science & Applications, 2016, 5: e16134.

    Google Scholar

    [12] Wang Wenhui, Gu Junnan, He Ting, et al. Optical super-resolution microscopy and its applications in nano-catalysis[J]. Nano Research, 2015, 8(2): 441-455. doi: 10.1007/s12274-015-0709-y

    CrossRef Google Scholar

    [13] Synge E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362. doi: 10.1080/14786440808564615

    CrossRef Google Scholar

    [14] Betzig E, Lewis A, Harootunian A, et al. Near field scanning optical microscopy (NSOM)[J]. Biophysical Journal, 1986, 49(1): 269-279. doi: 10.1016/S0006-3495(86)83640-2

    CrossRef Google Scholar

    [15] Bek A, Vogelgesang R, Kern K. Apertureless scanning near field optical microscope with sub-10nm resolution[J]. Review of Scientific Instruments, 2006, 77(4): 043703. doi: 10.1063/1.2190211

    CrossRef Google Scholar

    [16] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [17] Liu Zhaowei, Durant S, Lee H, et al. Far-field optical superlens[J]. Nano Letters, 2007, 7(2): 403-408. doi: 10.1021/nl062635n

    CrossRef Google Scholar

    [18] Zhang Xiang, Liu Zhaowei. Superlenses to overcome the diffraction limit[J]. Nature Materials, 2008, 7(6): 435-441. doi: 10.1038/nmat2141

    CrossRef Google Scholar

    [19] Kawata S, Inouye Y, Verma P. Plasmonics for near-field nano-imaging and superlensing[J]. Nature Photonics, 2009, 3(7): 388-394. doi: 10.1038/nphoton.2009.111

    CrossRef Google Scholar

    [20] Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [21] Taubner T, Korobkin D, Urzhumov Y, et al. Near-field micros-copy through a SiC superlens[J]. Science, 2006, 313(5793): 1595. doi: 10.1126/science.1131025

    CrossRef Google Scholar

    [22] Wang Zengbo, Guo Wei, Li Lin, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. doi: 10.1038/ncomms1211

    CrossRef Google Scholar

    [23] Yan Yinzhou, Li Lin, Feng Chao, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809-1816. doi: 10.1021/nn406201q

    CrossRef Google Scholar

    [24] Allen K W, Farahi N, Li Yangcheng, et al. Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis[J]. Annalen der Physik, 2015, 527(7-8): 513-522. doi: 10.1002/andp.v527.7-8

    CrossRef Google Scholar

    [25] Lee S, Li Lin, Wang Zengbo, et al. Immersed transparent microsphere magnifying sub-diffraction-limited objects[J]. Applied Optics, 2013, 52(30): 7265-7270. doi: 10.1364/AO.52.007265

    CrossRef Google Scholar

    [26] Darafsheh A, Walsh G F, Dal Negro L, et al. Optical super-resolution by high-index liquid-immersed microspheres[J]. Applied Physics Letters, 2012, 101(14): 141128. doi: 10.1063/1.4757600

    CrossRef Google Scholar

    [27] Li Lin, Guo Wei, Yan Yinzhou, et al. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy[J]. Light: Science & Applications, 2013, 2: e104.

    Google Scholar

    [28] Yang Hui, Trouillon R, Huszka G, et al. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet[J]. Nano Letters, 2016, 16(8): 4862-4870. doi: 10.1021/acs.nanolett.6b01255

    CrossRef Google Scholar

    [29] Allen K W, Farahi N, Li Yangcheng, et al. Overcoming the diffraction limit of imaging nanoplasmonic arrays by micro-spheres and microfibers[J]. Optics Express, 2015, 23(19): 24484-24496. doi: 10.1364/OE.23.024484

    CrossRef Google Scholar

    [30] Wu M X, Huang B J, Chen R, et al. Modulation of photonic nanojets generated by microspheres decorated with concentric rings[J]. Optics Express, 2015, 23(15): 20096-20103. doi: 10.1364/OE.23.020096

    CrossRef Google Scholar

    [31] Wu Mengxue, Chen Rui, Ling Jinzhong, et al. Creation of a longitudinally polarized photonic nanojet via an engineered microsphere[J]. Optics Letters, 2017, 42(7): 1444-1447. doi: 10.1364/OL.42.001444

    CrossRef Google Scholar

    [32] Fan Wen, Yan Bing, Wang Zengbo, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901.

    Google Scholar

    [33] Li Jinxing, Liu Wenjuan, Li Tianlong, et al. Swimming microrobot optical nanoscopy[J]. Nano Letters, 2016, 16(10): 6604-6609. doi: 10.1021/acs.nanolett.6b03303

    CrossRef Google Scholar

    [34] Luk'yanchuk B S, Paniagua-Domínguez R, Minin I, et al. Refractive index less than two: photonic nanojets yesterday, today and tomorrow[J]. Optical Materials Express, 2017, 7(6): 1820-1847. doi: 10.1364/OME.7.001820

    CrossRef Google Scholar

    [35] Liu Hong, Wang Bing, Ke Lin, et al. High aspect subdiffraction-limit photolithography via a silver superlens[J]. Nano Letters, 2012, 12(3): 1549-1554. doi: 10.1021/nl2044088

    CrossRef Google Scholar

    [36] Liu Hong, Wang Bing, Ke Lin, et al. High contrast superlens lithography engineered by loss reduction[J]. Advanced Functional Materials, 2012, 22(18): 3777-3783. doi: 10.1002/adfm.v22.18

    CrossRef Google Scholar

    [37] Srituravanich W, Fang N, Sun Cheng, et al. Plasmonic nanolithography[J]. Nano Letters, 2004, 4(6): 1085-1088. doi: 10.1021/nl049573q

    CrossRef Google Scholar

    [38] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957-961. doi: 10.1021/nl0506094

    CrossRef Google Scholar

    [39] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [40] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [41] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2): 82-87. doi: 10.1046/j.1365-2818.2000.00710.x

    CrossRef Google Scholar

    [42] Gustafsson M G L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37): 13081-13086. doi: 10.1073/pnas.0406877102

    CrossRef Google Scholar

    [43] Allen J R, Ross S T, Davidson M W. Structured illumination microscopy for superresolution[J]. Chemphyschem, 2014, 15(4): 566-576. doi: 10.1002/cphc.201301086

    CrossRef Google Scholar

    [44] Rust M J, Bates M, Zhuang Xiaowei. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [45] Bates M, Huang Bo, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753. doi: 10.1126/science.1146598

    CrossRef Google Scholar

    [46] Huang Bo, Wang Wenqin, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813. doi: 10.1126/science.1153529

    CrossRef Google Scholar

    [47] Dempsey G T, Bates M, Kowtoniuk W E, et al. Photoswitching mechanism of cyanine dyes[J]. Journal of the American Chemical Society, 2009, 131(151): 18192-18193.

    Google Scholar

    [48] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. doi: 10.1126/science.1127344

    CrossRef Google Scholar

    [49] Shroff H, Galbraith C G, Galbraith J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423. doi: 10.1038/nmeth.1202

    CrossRef Google Scholar

    [50] Planchon T A, Gao Liang, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417-423. doi: 10.1038/nmeth.1586

    CrossRef Google Scholar

    [51] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [52] Willig K I, Rizzoli S O, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[J]. Nature, 2006, 440(7086): 935-939. doi: 10.1038/nature04592

    CrossRef Google Scholar

    [53] Bretschneider S, Eggeling C, Hell S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007, 98(21): 218103. doi: 10.1103/PhysRevLett.98.218103

    CrossRef Google Scholar

    [54] Willig K I, Harke B, Medda R, et al. STED microscopy with continuous wave beams[J]. Nature Methods, 2007, 4(11): 915-918. doi: 10.1038/nmeth1108

    CrossRef Google Scholar

    [55] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3): 144-147. doi: 10.1038/nphoton.2009.2

    CrossRef Google Scholar

    [56] Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204-208. doi: 10.1038/nature10497

    CrossRef Google Scholar

    [57] Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068): 551. doi: 10.1126/science.1215369

    CrossRef Google Scholar

    [58] Hanne J, Falk H J, Görlitz F, et al. STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7127. doi: 10.1038/ncomms8127

    CrossRef Google Scholar

    [59] Hell S W, Sahl S J, Bates M, et al. The 2015 super-resolution microscopy roadmap[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 443001. doi: 10.1088/0022-3727/48/44/443001

    CrossRef Google Scholar

    [60] Di Francia G T. Super-gain antennas and optical resolving power[J]. Nuovo Cimento, 1952, 9(S3): 426-438. doi: 10.1007/BF02903413

    CrossRef Google Scholar

    [61] Liu Tao, Tan Jiubin, Liu Jian, et al. Creation of subwavelength light needle, equidistant multi-focus, and uniform light tunnel[J]. Journal of Modern Optics, 2013, 60(5): 378-381. doi: 10.1080/09500340.2013.778343

    CrossRef Google Scholar

    [62] Liu Tao, Shen Tong, Yang Shuming, et al. Subwavelength focusing by binary multi-annular plates: design theory and experiment[J]. Journal of Optics, 2015, 17(3): 035610. doi: 10.1088/2040-8978/17/3/035610

    CrossRef Google Scholar

    [63] Liu Tao, Liu Jian, Zhang He, et al. Efficient optimization of super-oscillatory lens and transfer function analysis in confocal scanning microscopy[J]. Optics Communications, 2014, 319: 31-35. doi: 10.1016/j.optcom.2013.12.054

    CrossRef Google Scholar

    [64] Sheppard C J R, Choudhury A. Annular pupils, radial polarization, and superresolution[J]. Applied Optics, 2004, 43(22): 4322-4327. doi: 10.1364/AO.43.004322

    CrossRef Google Scholar

    [65] Davis B J, Karl W C, Swan A K, et al. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156. doi: 10.1364/OPEX.12.004150

    CrossRef Google Scholar

    [66] Huang Kun, Li Yongping. Realization of a subwavelength focused spot without a longitudinal field component in a solid immersion lens-based system[J]. Optics Letters, 2011, 36(18): 3536-3538. doi: 10.1364/OL.36.003536

    CrossRef Google Scholar

    [67] Huang Kun, Shi Peng, Kang Xueliang, et al. Design of DOE for generating a needle of a strong longitudinally polarized field[J]. Optics Letters, 2010, 35(7): 965-967. doi: 10.1364/OL.35.000965

    CrossRef Google Scholar

    [68] Wang Haifeng, Shi Luping, Lukyanchuk B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505. doi: 10.1038/nphoton.2008.127

    CrossRef Google Scholar

    [69] Berry M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(20): 205203. doi: 10.1088/1751-8113/46/20/205203

    CrossRef Google Scholar

    [70] Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and Theoretical, 2006, 39(22): 6965-6977. doi: 10.1088/0305-4470/39/22/011

    CrossRef Google Scholar

    [71] Huang Fumin, Zheludev N, Chen Yifang, et al. Focusing of light by a nanohole array[J]. Applied Physics Letters, 2007, 90(9): 091119. doi: 10.1063/1.2710775

    CrossRef Google Scholar

    [72] Roy T, Rogers E T F, Yuan Guanghui, et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23): 231109. doi: 10.1063/1.4882246

    CrossRef Google Scholar

    [73] Huang Fumin, Chen Yifang, de Abajo F J G, et al. Optical super-resolution through super-oscillations[J]. Journal of Optics A: Pure and Applied Optics, 2007, 9(9): S285-S288. doi: 10.1088/1464-4258/9/9/S01

    CrossRef Google Scholar

    [74] Rogers E T F, Zheludev N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008

    CrossRef Google Scholar

    [75] Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108. doi: 10.1063/1.4774385

    CrossRef Google Scholar

    [76] Yuan Guanghui, Rogers E T F, Zheludev N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light: Science & Applications, 2017, 6: e17036.

    Google Scholar

    [77] Yuan Guanghui, Vezzoli S, Altuzarra C, et al. Quantum super-oscillation of a single photon[J]. Light: Science & Applications, 2016, 5: e16127.

    Google Scholar

    [78] Huang Fumin, Kao T S, Fedotov V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472. doi: 10.1021/nl801476v

    CrossRef Google Scholar

    [79] Huang Fumin, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249-1254. doi: 10.1021/nl9002014

    CrossRef Google Scholar

    [80] Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280

    CrossRef Google Scholar

    [81] Wang Qian, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2015, 10(1): 60-65.

    Google Scholar

    [82] Zheludev N I. What diffraction limit?[J]. Nature Materials, 2008, 7(6): 420-422. doi: 10.1038/nmat2163

    CrossRef Google Scholar

    [83] Roy T, Rogers E T F, Zheludev N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577-7582. doi: 10.1364/OE.21.007577

    CrossRef Google Scholar

    [84] Yuan Guanghui, Rogers E T F, Roy T, et al. Planar su-per-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4: 6333.

    Google Scholar

    [85] Huang Kun, Ye Huapeng, Teng Jinghua, et al. Optimiza-tion-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152-157.

    Google Scholar

    [86] Ye Huapeng, Qiu Chengwei, Huang Kun, et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method[J]. Laser Physics Letters, 2013, 10(6): 065004. doi: 10.1088/1612-2011/10/6/065004

    CrossRef Google Scholar

    [87] Qin Fei, Huang Kun, Wu Jianfeng, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721. doi: 10.1002/adma.201602721

    CrossRef Google Scholar

    [88] Wang Jun, Qin Fei, Zhang Daohua, et al. Subwavelength superfocusing with a dipole-wave-reciprocal binary zone plate[J]. Applied Physics Letters, 2013, 102(6): 061103. doi: 10.1063/1.4791581

    CrossRef Google Scholar

    [89] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    Google Scholar

    [90] Qin Fei, Hong Minghui. Breaking the diffraction limit in far field by planar Metalens[J]. Science China Physics, Mechanics & Astronomy, 2017, 60(4): 044231.

    Google Scholar

    [91] Qin Fei, Huang Kun, Wu Jianfeng, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977. doi: 10.1038/srep09977

    CrossRef Google Scholar

    [92] Wang Changtao, Tang Dongliang, Wang Yanqin, et al. Super-resolution optical telescopes with local light diffraction shrinkage[J]. Scientific Reports, 2015, 5: 18485.

    Google Scholar

    [93] Richards B, Wolf E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1959, 253(1274): 358-379. doi: 10.1098/rspa.1959.0200

    CrossRef Google Scholar

    [94] Lerman G M, Yanai A, Levy U. Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light[J]. Nano Letters, 2009, 9(5): 2139-2143. doi: 10.1021/nl900694r

    CrossRef Google Scholar

    [95] Wilson T, Massoumian F, Juškaitis R. Generation and focusing of radially polarized electric fields[J]. Optical Engineering, 2003, 42(11): 3088-3089. doi: 10.1117/1.1618816

    CrossRef Google Scholar

    [96] Huang Kun, Shi Peng, Cao G W, et al. Vector-vortex Bes-sel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. doi: 10.1364/OL.36.000888

    CrossRef Google Scholar

    [97] Li Xiangping, Cao Yaoyu, Gu Min. Superresolution-focal-vol-ume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512. doi: 10.1364/OL.36.002510

    CrossRef Google Scholar

    [98] Li Xiangping, Venugopalan P, Ren Haoran, et al. Super-resolved pure-transverse focal fields with an enhanced energy density through focus of an azimuthally polarized first-order vortex beam[J]. Optics Letters, 2014, 39(20): 5961-5964. doi: 10.1364/OL.39.005961

    CrossRef Google Scholar

    [99] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [100] Youngworth K S, Brown T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077

    CrossRef Google Scholar

    [101] Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 233901. doi: 10.1103/PhysRevLett.91.233901

    CrossRef Google Scholar

    [102] Liu Hong, Mehmood M Q, Huang Kun, et al. Twisted focusing of optical vortices with broadband flat spiral zone plates[J]. Advanced Optical Materials, 2014, 2(12): 1193-1198. doi: 10.1002/adom.201400315

    CrossRef Google Scholar

    [103] Huang Kun, Liu Hong, Garcia-Vidal F J, et al. Ultra-high-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059. doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [104] Wang Sicong, Li Xiangping, Zhou Jianying, et al. Ultralong pure longitudinal magnetization needle induced by annular vortex binary optics[J]. Optics Letters, 2014, 39(17): 5022-5025. doi: 10.1364/OL.39.005022

    CrossRef Google Scholar

    [105] Chen Gang, Wu Zhixiang, Yu Anping, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6: 37776. doi: 10.1038/srep37776

    CrossRef Google Scholar

    [106] Yu Anping, Chen Gang, Zhang Zhihai, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859. doi: 10.1038/srep38859

    CrossRef Google Scholar

    [107] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [108] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Ad-vanced Optical Materials, 2016, 4(6): 818-833. doi: 10.1002/adom.v4.6

    CrossRef Google Scholar

    [109] Aieta F, Genevet P, Kats M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [110] Devlin R C, Khorasaninejad M, Chen Weiting, et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(38): 10473-10478. doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [111] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [112] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [113] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [114] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174-178. doi: 10.1016/j.optcom.2015.12.043

    CrossRef Google Scholar

    [115] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & As-tronomy, 2015, 58(9): 594201.

    Google Scholar

    [116] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [117] Zhao Xiaonan, Hu Jingpei, Lin Yu, et al. Ultra-broadband achromatic imaging with diffractive photon sieves[J]. Scientific Reports, 2016, 6: 28319. doi: 10.1038/srep28319

    CrossRef Google Scholar

  • Improving the imaging resolution has always been one of the most important topics since the invention of optical microscope. Due to the fundamental laws of wave optics, the focusing and imaging resolution of traditional refraction and diffraction lenses are subject to the Rayleigh Criterion (0.61λ/NA), and the spatial resolution of optical microscopy is restricted to ~200 nm at visible light. Tremendous efforts have been made to fight against the diffraction limit in the past decades, and several novel approaches have been invented which could be categorized as near-field and far-field modes. For the near-field techniques, such as NSOM, superlens, hyperlens, microsphere lens, they always suffer from the challenges of near-field operation and small field of view, which make them not meet some requirements of practical applications. Although very high imaging resolution in far-field could be achieved by the fluorescence-based approaches, all these techniques have a common feature that is quite limited to biological domain because of the requirement to put dyes and fluorescence into objects. Therefore, the label-free technique for super-resolution imaging in far field is very important for general applications. Recent advance in this field is the development of planar metalens which could achieve sub-diffractive focusing and imaging in far field by means of light field modulation. Super-oscillatory lens (SOL) and super-critical lens (SCL) are the typical representatives of planar metalens. Through precisely modulating the interference effect of each diffractive unit, the focal spot size in a certain region of the target plane is controllable in lateral and longitudinal directions. Combined with the confocal technique, the label-free superresolution imaging could be realized in far field with purely non-invasive manners. Compared with the traditional optical lens, the planar metalens is much more attractive due to its distinct advantages of powerful focusing capabilities, compact configuration, higher design freedom and the integratable properties, etc. In this review, we briefly introduce the field modulation mechanism and design principle of the planar metalens. The research progress of the super-oscillatory lens and super-critical lens, as well as their applications in far-field label-free super-resolution imaging, is presented in detail. The advantages and limitations of that planar lens are compared and briefly discussed. A perspective about the future outlook of planar metalens is summarized. Since the planar metalens has a powerful capability in manipulating the light field, the rapid development in various applications would be gradually realized in the near future.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(11800) PDF downloads(6279) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint