Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001
Citation: Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 969-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

Research and development of laser shock processing technology

    Fund Project:
More Information
  • Laser shock processing (LSP) is a new and efficient type of laser surface treatment technologies. Compared with the traditional surface modification technologies, laser shock processing can form a deeper residual stress layer to the material and make surface grain refinement or even appear nano-crystalline, meanwhile significantly improving the fatigue life of the material. When the high-energy laser irradiates at the confinement layer (black paint, black tape or aluminum foil), the material of the confinement layer is instantaneously melted and gasified to produce a high-temperature and high-pressure plasma. The plasma shock wave is a detonation wave that can be used to calculate the peak pressure of the shock wave by the C-J model. The plasma propagates to the interior of the material under the constraint of the confinement layer (water or optical glass). The pressure of the shock wave far exceeds the elastic yield limit of the material. Therefore, the material undergoes elastic-plastic deformation and eventually forms a stable residual stress field and a slight plastic deformation. The development of the technology research process is also introduced. On this basis, the development direction of the technology is forecasted.
  • 加载中
  • [1] 激光加工技术及其应用[M].北京:冶金工业出版社, 2007: 1.

    Google Scholar

    [2] 李伟, 李应红, 何卫锋, 等.激光冲击强化技术的发展和应用[J].激光与光电子学进展, 2008, 45(12): 15–19.

    Google Scholar

    Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15–19.

    Google Scholar

    [3] Sealy M P, Guo Y B, Caslaru R C, et al. Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants[J]. International Journal of Fatigue, 2016, 82: 428–436. doi: 10.1016/j.ijfatigue.2015.08.024

    CrossRef Google Scholar

    [4] 乔红超, 赵亦翔, 赵吉宾, 等.激光冲击强化对TiAl合金组织和性能的影响[J].光学精密工程, 2014, 22(7): 1766–1773.

    Google Scholar

    Qiao Hongchao, Zhao Yixiang, Zhao Jibin, et al. Effect of laser peening on microstructures and properties of TiAl alloy[J]. Optics and Precision Engineering, 2014, 22(7): 1766–1773.

    Google Scholar

    [5] Caralapatti V K, Narayanswamy S. Analyzing the effect of high repetition laser shock peening on dynamic corrosion rate of magnesium[J]. Optics & Laser Technology, 2017, 93: 165–174.

    Google Scholar

    [6] 李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013: 7.

    Google Scholar

    [7] Fairand B P, Clauer A H. Laser generation of high-amplitude stress waves in materials[J]. Journal of Applied Physics, 1979, 50(3): 1497–1502. doi: 10.1063/1.326137

    CrossRef Google Scholar

    [8] Zhou Liucheng, He Weifeng, Luo Sihai, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. Journal of Alloys and Compounds, 2016, 655: 66–70. doi: 10.1016/j.jallcom.2015.06.268

    CrossRef Google Scholar

    [9] 车志刚, 杨杰, 巩水利, 等.激光冲击强化TC4钛合金表面自纳米化研究(英文)[J].稀有金属材料与工程, 2014, 43(5): 1056–1060.

    Google Scholar

    Che Zhigang, Yang Jie, Gong Shuili, et al. Self-nanocry stallization of Ti-6Al-4V alloy surface induced by laser shock processing[J]. Rare Metal Materials and Engineering, 2014, 43(5): 1056–1060.

    Google Scholar

    [10] 朱颖, 范博文, 郭伟, 等.激光冲击次数对TA15微观组织和硬度的影响[J].北京航空航天大学学报, 2014, 40(4): 444–448.

    Google Scholar

    Zhu Ying, Fan Bowen, Guo Wei, et al. Influence of laser shock peening times on microstructure and hardness of TA15 titanium alloy [J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(4): 444–448.

    Google Scholar

    [11] Kashaev N, Ventzke V, Horstmann M, et al. Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens[J]. International Journal of Fatigue, 2017, 98: 223–233. doi: 10.1016/j.ijfatigue.2017.01.042

    CrossRef Google Scholar

    [12] Montross C S, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021–1036. doi: 10.1016/S0142-1123(02)00022-1

    CrossRef Google Scholar

    [13] 孙承纬.激光辐照效应[M].北京:国防工业出版社, 2002: 112.

    Google Scholar

    [14] 泽尔道维奇Я Б, 康巴涅耶茨A C. 爆震原理[M]. 徐华舫译. 北京: 高等教育出版社, 1958.

    Google Scholar

    [15] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 755–784. doi: 10.1063/1.346780

    CrossRef Google Scholar

    [16] Cottet F, Romain J P. Formation and decay of laser-generated shock waves[J]. Physics Review A, 1982, 25(1): 576–579. doi: 10.1103/PhysRevA.25.576

    CrossRef Google Scholar

    [17] 李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013: 133.

    Google Scholar

    [18] 孙汝剑, 朱颖, 郭伟, 等.激光冲击强化对TC17表面形貌及残余应力场影响的有限元数值模拟研究[J].塑性工程学报, 2017, 24(1): 187–193.

    Google Scholar

    Sun Rujian, Zhu Ying, Guo Wei, et al. Effect of laser shock processing on surface morphology and residual stress field of TC17 titanium alloy by FEM method[J]. Journal of Plasticity Engineering, 2017, 24(1): 187–193.

    Google Scholar

    [19] Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 1972, 43(9): 3893–3896. doi: 10.1063/1.1661837

    CrossRef Google Scholar

    [20] Clauer A H, Fairand B P, Wilcox B A. Pulsed laser induced deformation in an Fe-3 Wt Pct Si alloy[J]. Metallurgical Transactions A, 1977, 8(1): 119–125. doi: 10.1007/BF02677273

    CrossRef Google Scholar

    [21] Sano Yuji, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 121(1–4): 432– 436. doi: 10.1016/S0168-583X(96)00551-4

    CrossRef Google Scholar

    [22] 李志勇, 朱文辉, 周光泉, 等.实验研究有机玻璃约束层对激光冲击波的影响[J].中国激光, 1997, 24(2): 118–122.

    Google Scholar

    Li Zhiyong, Zhu Wenhui, Zhou Guangquan, et al. Experimental study of the effects of PMMA confinement on laser-induced shock waves[J]. Chinese Journal of Lasers, 1997, 24(2): 118–122.

    Google Scholar

    [23] 周建忠, 周明, 肖爱民, 等.约束层的厚度和柔性对激光冲击强化效果的影响[J].应用激光, 2002, 22(1): 7–9, 6.

    Google Scholar

    Zhou Jianzhong, Zhou Ming, Xiao Aimin, et al. Study of the effects of overlay thickness and flexibility on laser shock processing[J]. Applied Laser, 2002, 22(1): 7–9, 6.

    Google Scholar

    [24] Grevey D, Maiffredy L, Vannes A B, et al. Transformation de phase par choc laser d'un acier T.R.I.P.[J]. Scripta Metallurgica et Materialia, 1990, 24(4): 767–772. doi: 10.1016/0956-716X(90)90239-D

    CrossRef Google Scholar

    [25] Forget P, Strude J L, Jeandin M, et al. Laser shock surface treatment of Ni-based superalloys [J]. Materials and Manufacturing Processes, 1990, 5(4): 501–528. doi: 10.1080/10426919008953275

    CrossRef Google Scholar

    [26] Cellard C, Retraint D, Fran ois M, et al. Laser shock peening of Ti-17 titanium alloy: influence of process parameters[J]. Materials Science and Engineering: A, 2012, 532: 362–372. doi: 10.1016/j.msea.2011.10.104

    CrossRef Google Scholar

    [27] Sano Y, Obata M, Kubo T, et al. Retardation of crack initiation and growth in austenitic stainless steels by laser peening without protective coating[J]. Materials Science and Engineering: A, 2006, 417(1–2): 334–340. doi: 10.1016/j.msea.2005.11.017

    CrossRef Google Scholar

    [28] Sano Y, Adachi Y, Akita K, et al. Enhancement of surface property by low-energy laser peening without protective coating[J]. Key Engineering Materials, 2007, 345–346: 1589–1592. doi: 10.4028/www.scientific.net/KEM.345-346

    CrossRef Google Scholar

    [29] Oca a J L, Morales M, Molpeceres C, et al. Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments[J]. Applied Surface Science, 2004, 238(1–4): 242–248. doi: 10.1016/j.apsusc.2004.05.232

    CrossRef Google Scholar

    [30] Bischoff A J, Arabi-Hashemi A, Ehrhardt M, et al. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films[J]. Applied Physics Letters, 2016, 108(15): 151901. doi: 10.1063/1.4945709

    CrossRef Google Scholar

    [31] Shadangi Y, Chattopadhyay K, Rai S B, et al. Effect of LASER shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel[J]. Surface and Coatings Technology, 2015, 280: 216–224. doi: 10.1016/j.surfcoat.2015.09.014

    CrossRef Google Scholar

    [32] Peyre P, Berthe L, Scherpereel X, et al. Experimental study of laser-driven shock waves in stainless steels[J]. Journal of Applied Physics, 1998, 84(11): 5985–5992. doi: 10.1063/1.368894

    CrossRef Google Scholar

    [33] Ye Chang, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 2011, 59(3): 1014–1025. doi: 10.1016/j.actamat.2010.10.032

    CrossRef Google Scholar

    [34] Ye Chang, Suslov S, Lin Dong, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 2012, 92(11): 1369–1389. doi: 10.1080/14786435.2011.645899

    CrossRef Google Scholar

    [35] Ye Chang, Suslov S, Lin Dong, et al. Microstructure and mechanical properties of copper subjected to cryogenic laser shock peening[J]. Journal of Applied Physics, 2011, 110(8): 083504. doi: 10.1063/1.3651508

    CrossRef Google Scholar

    [36] Ye Chang, Liu Yang, Sang Xiahan, et al. Solid state amorphization of nanocrystalline nickel by cryogenic laser shock peening[J]. Journal of Applied Physics, 2015, 118(13): 134902. doi: 10.1063/1.4932142

    CrossRef Google Scholar

    [37] Braisted W, Brockman R. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7): 719–724. doi: 10.1016/S0142-1123(99)00035-3

    CrossRef Google Scholar

    [38] Peyre P, Berthe L, Fabbro R, et al. Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6–3 ns laser pulses in a confined regime with water[J]. Journal of Physics, 2000, 33(5): 498–503.

    Google Scholar

    [39] Ge Maozhong, Xiang Jianyun. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy[J]. Journal of Alloys and Compounds, 2016, 680: 544–552. doi: 10.1016/j.jallcom.2016.04.179

    CrossRef Google Scholar

    [40] Lu J Z, Wu L J, Sun G F, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts[J]. Acta Materialia, 2017, 127: 252–266. doi: 10.1016/j.actamat.2017.01.050

    CrossRef Google Scholar

    [41] 李靖, 李军, 何卫锋, 等. TC17钛合金激光多次冲击强化后组织和力学性能研究[J].红外与激光工程, 2014, 43(9): 2889–2895.

    Google Scholar

    Li Jing, Li Jun, He Weifeng, et al. Microstructure and mechanical properties of TC17 titanium alloy by laser shock peening with different impacts[J]. Infrared and Laser Engineering, 2014, 43(9): 2889–2895.

    Google Scholar

    [42] 孟宪凯, 周建忠, 苏纯, 等.温度对激光喷丸强化2024航空铝合金表面力学性能的影响[J].中国激光, 2016, 43(10): 1002003.

    Google Scholar

    Meng Xiankai, Zhou Jianzhong, Su Chun, et al. Effect of temperature on surface mechanical property of 2024 aluminum alloy treated by laser peening[J]. Chinese Journal of Lasers, 2016, 43(10): 1002003.

    Google Scholar

    [43] Lu G X, Liu J D, Qiao H C, et al. Surface nano-hardness and microstructure of a single crystal nickel base superalloy after laser shock peening[J]. Optics & Laser Technology, 2017, 91: 116–119.

    Google Scholar

    [44] 乔红超, 赵吉宾, 陆莹.纳秒脉宽Nd: YAG激光冲击强化激光器的研制及分析[J].中国激光, 2013, 40(8): 802001.

    Google Scholar

    Qiao Hongchao, Zhao Jibin, Lu Ying. Develop and analysis of nanosecond pulse width Nd: YAG laser for laser peening[J]. Chinese Journal of Lasers, 2013, 40(8): 802001.

    Google Scholar

  • Abstract: The concept of “laser” was proposed at the beginning of 20th century. Since then, laser research had alwaysbeen a popular research area. Laser is widely applied because of its characteristics, such as good direction, highbrightness, and good color. Laser processing technology is one of the most promising areas for laser applications. Laser shock processing (LSP) is a new and efficient type of laser surface treatment technologies. Modern society makeshigher requirements of the service to mechanical parts, and mechanical properties of parts are needed to improve tomeet the use. As a typical laser surface treatment technology, LSP can achieve a greater increase of the performance,compared with other traditional surface treatment technologies. LSP strengthening process is similar to that of shotpeening, except that the mechanical effect of laser is used instead of the impact of the projectile. The impact pressureand the influence of depth on the surface of the material are larger. It also has a smaller change to the surface topography of parts. LSP can bring a deeper residual stress layer to the material and make surface grain refinement or evenappear nano-crystalline, meanwhile significantly improving the fatigue life of the material. The LSP utilizes the mechanical effect of the laser rather than the thermal effect. The high-energy laser irradiates the material of the confinement layer (usually is black paint, black tape or aluminum foil), and the material of the confinement layer is instantaneously melted and gasified to produce high-temperature and high-pressure plasma. The plasma continues to absorblaser energy and expands to form a shock wave. The plasma shock wave can be seen as a detonation wave of a physicalproperty, and C-J model is used to calculate and predict the variation of the peak pressure of the plasma shock wave.The plasma propagates to the interior of the material under the constraint of the confinement layer (usually is water oroptical glass). The pressure of the shock wave far exceeds the elastic yield limit of the material. Therefore, the materialundergoes elastic-plastic deformation and eventually forms a stable residual stress field and a slight plastic deformation. The research and development of LSP are introduced, including the key of this technology: the selection andperfection process of absorbing and protective layer. The development direction of the technology is also forecasted.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(9678) PDF downloads(5642) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint