空间外差光谱仪的干涉图校正

张文理, 田逢春, 赵贞贞, 等. 空间外差光谱仪的干涉图校正[J]. 光电工程, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003
引用本文: 张文理, 田逢春, 赵贞贞, 等. 空间外差光谱仪的干涉图校正[J]. 光电工程, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003
Zhang Wenli, Tian Fengchun, Zhao Zhenzhen, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003
Citation: Zhang Wenli, Tian Fengchun, Zhao Zhenzhen, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003

空间外差光谱仪的干涉图校正

  • 基金项目:
    重庆市基础科学与前沿技术研究专项项目(重点)(cstc2015jcyjB0493)
详细信息

Interferogram correction of spatial heterodyne spectrometer

  • Fund Project:
More Information
  • 空间外差光谱技术(SHS)作为一种新型超光谱分辨率的光谱分析技术近年来得到了快速发展和广泛应用。根据SHS的基本结构和原理,本文对SHS应用系统中能对干涉图产生影响的各种干扰和畸变进行了分析,并针对这些干扰提出了一种SHS干涉图校正方案。实验结果表明,该方案不仅可以对干涉图进行有效校正,而且复原光谱能够良好地反映输入光谱信息,提高SHS的反演精度。

  • Abstract: Spatial heterodyne spectroscopy (SHS) is a new spectral analysis technique for super-spectral resolution which is developed rapidly and used widely. At present, common applications include atmospheric microelement detection, atmospheric water vapor detection, laboratory astrophysics observation and other weak target identification. However, in practical applications, there are distortions of the collected interferogram which affect the detection accuracy of the system because of bad splitting effect of beam splitter, contaminated grating surface, unbalanced interferometer arms, uneven detector response spectrum, electronic circuit error, the dust in the test environment, test platform instability and other factors. Therefore, the noise removal and interference suppression of the interferogram generated by spatial heterodyne spectroscopy are one of the hot issues in the current academic research. Basic structure and principle of SHS were analyzed in detail and the interference and distortion of SHS application system which could influence the interferogram were analyzed and a correction scheme of SHS interferogram with strong robustness was proposed according to the existing interferogram processing scheme. The correction scheme includes noise suppression, baseline removal, flatness correction, apodization, phase correction and so on. Then, the SHS experimental platform was constructed by using helium-neon laser and sodium lamp respectively and the collected interferogram was analyzed by the scheme mentioned above. Finally, compared the two restoration spectrums got by the original interferogram and the correction interferogram respectively, it is found that the proposed scheme can not only effectively eliminate the interference information in the interferogram, but also reflect the input spectral information well and improve the inversion accuracy of the SHS system (The resolution limit error of the experimental platform 1 is 0.0004 mm-1 and the resolution limit error of the experimental platform 2 is 0.016 mm-1, indicating that the actual resolution of the platform has good agreement with the theoretical resolution). The effectiveness and superiority of the scheme are verified. In addition, the proposed correction scheme for interferogram does not impose additional requirements on the application environment and equipment of the system so the scheme has high universality and provides some support for SHS research.

  • 加载中
  • 图 1  SHS系统结构图.

    Figure 1.  Structure of SHS system.

    图 2  4阶 Blackman-Harris窗.

    Figure 2.  4-order Blackman-Harris window.

    图 3  氦氖激光器-SHS 实验平台 1.

    Figure 3.  SHS experiment platform 1 of He-Ne laser.

    图 4  钠光灯-SHS 实验平台 2.

    Figure 4.  SHS experiment platform 2 of sodium.

    图 5  SHS干涉图校正处理流程图.

    Figure 5.  Flow chart of SHS interferogram correction processing.

    图 6  平台2降噪数据. (a)降噪干涉图. (b)降噪复原光谱.

    Figure 6.  Denoising data of platform 2. (a) Interferogram of denoising. (b) Recovered spectrum of denoising.

    图 7  平台2平坦度校正数据. (a)平坦度校正干涉图. (b)平坦度校正复原光谱.

    Figure 7.  Flatfielding correction data of platform 2. (a) Interferogram of flatfielding correction. (b) Recovered spectrum of flatfielding correction.

    图 8  平台2基线去除数据. (a)基线去除干涉图. (b)基线去除复原光谱.

    Figure 8.  Removing baseline data of platform 2. (a) Interferogram of removing baseline. (b) Recovered spectrum of removing baseline.

    图 9  平台2切趾数据. (a)切趾干涉图. (b)切趾复原光谱.

    Figure 9.  Apodization data of platform 2. (a) Interferogram of apodization. (b) Recovered spectrum of apodization.

    图 10  平台1原始数据. (a)原始干涉图. (b)原始复原光谱.

    Figure 10.  Original data of platform 1. (a) Original interferogram. (b) Original recovered spectrum.

    图 11  平台1校正数据. (a)校正干涉图. (b)校正复原光谱.

    Figure 11.  Corrected data of platform 1. (a) Corrected Interferogram. (b) Corrected recovered spectrum.

    图 12  平台2原始数据. (a)原始干涉图. (b)原始复原光谱.

    Figure 12.  Original data of platform 2. (a) Original interferogram. (b) Original recovered spectrum

    图 13  钠灯干涉图校正. (a)相位校正后的干涉图. (b)复原光谱.

    Figure 13.  Interferogram processing of sodium lamp. (a) Phase corrected interferogram. (b) Recovered spectrum.

    表 1  实验平台1/2的相关性能参数.

    Table 1.  Relevant performance parameters of the experimental platform 1/2.

    参数 实验平台1 实验平台2
    光源 氦氖激光器
    (632.8 nm)
    钠光灯
    (589/589.6 nm)
    Littrow波长/nm 631 589.7
    Littrow角/(°) 22.25 20.72
    分辨极限/mm-1 0.1499 0.1605
    分辨能力 10596 10596
    光谱范围/mm-1 76.7488 82.1760
    下载: 导出CSV
  • [1]

    Dohi T, Suzuki T. Attainment of high resolution holographic Fourier transform spectroscopy[J]. Applied Optics, 1971, 10(5): 1137–1140. doi: 10.1364/AO.10.001137

    [2]

    Harlander J M. Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning[D]. Wisconsin: University of Wisconsin, 1991.

    [3]

    Brault J W. New approach to high-precision Fourier transform spectrometer design[J]. Applied Optics, 1996, 35(16): 2891–2896. doi: 10.1364/AO.35.002891

    [4]

    Tian Zhaobing, Yam S S H, Loock H P. Refractive index sensor based on an abrupt taper Michelson interferometer in a sin-gle-mode fiber[J]. Optics Letters, 2008, 33(10): 1105–1107. doi: 10.1364/OL.33.001105

    [5]

    Stacey D. The Fabry-Perot interferometer. History, theory, practice and applications[J]. Journal of Modern Optics, 1990, 37(7): 1279–1280.

    [6]

    Englert C R, Cardon J G, Stevens M H, et al. SHIMMER: using spatial heterodyne spectroscopy for the space based measurement of middle atmospheric hydroxyl[C]// Proceedings of the 35th COSPAR Scientific Assembly, 2004: 288.

    [7]

    Sinclair K A. Design and test of a slab waveguide spectrometer for spatial heterodyne observations of water vapor[D]. York: York University, 2014.

    [8]

    Harris W, Roesler F, Ben-Jaffel L, et al. Applications of spatial heterodyne spectroscopy for remote sensing of diffuse UV-vis emission line sources in the solar system[J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147: 973–977. doi: 10.1016/j.elspec.2005.01.223

    [9]

    Harlander J M, Lawler J E, Roesler F L, et al. A high resolution broad spectral range spatial heterodyne spectrometer for UV laboratory astrophysics[C]. Fourier Transform Spectrosco-py/Hyperspectral Imaging and Sounding of the Environment, 2007: FWA3.

    [10]

    Lawler J E, Labby Z E, Roesler F L, et al. A spatial heterodyne spectrometer for laboratory astrophysics; first interferogram[C]. Proceedings of the NASA LAW 2006, 2006: 115.

    [11]

    Suto H, Kuze A, Nakajima M, et al. Airborne SWIR FTS for GOSAT validation and calibration[J]. Proceedings of SPIE, 2008, 7106: 71060M. doi: 10.1117/12.799963

    [12]

    李志伟, 熊伟, 施海亮, 等.超光谱空间外差干涉仪探测器响应误差校正[J].光学学报, 2014, 34(5): 530001. http://www.opticsjournal.net/abstract.htm?id=OJ140418000177qWtZw3

    Li Zhiwei, Xiong Wei, Shi Hailiang, et al. Correction of detector response error for hyperspectral spatial heterodyne interferometer[J]. Acta Optica Sinica, 2014, 34(5): 530001. http://www.opticsjournal.net/abstract.htm?id=OJ140418000177qWtZw3

    [13]

    Griffiths P R, de Haseth J A. Fourier transform infrared spectrometry[M]. New York: Wiley, 1986: 297–302.

    [14]

    Perkins C. Spatial heterodyne spectroscopy: modeling and interferogram processing[D]. Merrimack, Massachusetts: Mer-rimack College, 2013.

    [15]

    叶松, 方勇华, 洪津, 等.空间外差光谱技术实验研究[J].光电工程, 2007, 34(5): 84–88. http://www.irgrid.ac.cn/handle/1471x/199301?mode=full&submit_simple=Show+full+item+record

    Ye Song, Fang Yonghua, Hong Jin, et al. Experimental study on spatial heterodyne spectroscopy[J]. Opto-Electronic Engineering, 2007, 34(5): 84–88. http://www.irgrid.ac.cn/handle/1471x/199301?mode=full&submit_simple=Show+full+item+record

    [16]

    Englert C R, Harlander J M. Flatfielding in spatial heterodyne spectroscopy[J]. Applied Optics, 2006, 45(19): 4583–4590. doi: 10.1364/AO.45.004583

    [17]

    方芳, 胡振华, 顾学军, 等.空间外差光谱仪干涉图修正研究[J].量子电子学报, 2010, 27(6): 650–654. http://www.cqvip.com/QK/90409A/201006/36119266.html

    Fang Fang, Hu Zhenhua, Gu Xuejun, et al. Correction of spatial heterodyne spectroscopy interferogram[J]. Chinese Journal of Quantum Electronics, 2010, 27(6): 650–654. http://www.cqvip.com/QK/90409A/201006/36119266.html

    [18]

    熊伟, 施海亮, 俞能海.空间外差干涉光谱仪仪器线型函数测量新方法研究[J].光谱学与光谱分析, 2015, 35(1): 267–271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201501064

    Xiong Wei, Shi Hailiang, Yu Nenghai. Study on a new method for instrumental line shape measurement of spatial heterodyne interference spectrometer[J]. Spectroscopy and Spectral Analysis, 2015, 35(1): 267–271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201501064

    [19]

    Englert C R, Harlander J M, Cardon J G, et al. Correction of phase distortion in spatial heterodyne spectroscopy[J]. Applied Optics, 2004, 43(36): 6680–6687. doi: 10.1364/AO.43.006680

    [20]

    Takada K, Aoyagi H, Okamoto K. Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme[J]. Optics Letters, 2011, 36(7): 1044–1046. doi: 10.1364/OL.36.001044

    [21]

    王新强, 叶松, 张丽娟, 等.空间外差光谱仪相位校正方法的研究[J].光谱学与光谱分析, 2013, 33(5): 1424–1428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201305059

    Wang Xinqiang, Ye Song, Zhang Lijuan, et al. Study on phase correction method of spatial heterodyne spectrometer[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1424–1428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201305059

    [22]

    王新强, 叶松, 熊伟, 等.空间外差光谱仪基频波长的定标[J].强激光与粒子束, 2013, 25(4): 827–831. https://www.wenkuxiazai.com/doc/a3b911782af90242a995e508.html

    Wang Xinqiang, Ye Song, Xiong Wei, et al. Calibration of fundamental frequency wavelength of spatial heterodyne spectrometer[J]. High Power Laser and Particle Beams, 2013, 25(4): 827–831. https://www.wenkuxiazai.com/doc/a3b911782af90242a995e508.html

    [23]

    李志伟, 熊伟, 施海亮, 等.空间外差光谱仪实验室定标技术研究[J].光学学报, 2014, 34(4): 0430002. http://www.irgrid.ac.cn/handle/1471x/910539

    Li Zhiwei, Xiong Wei, Shi Hailiang, et al. Study on laboratory calibration of spatial heterodyne spectrometer[J]. Acta Optica Sinica, 2014, 34(4): 0430002. http://www.irgrid.ac.cn/handle/1471x/910539

    [24]

    李志伟, 熊伟, 施海亮, 等.超光谱空间外差干涉仪探测器响应误差校正[J].光学学报, 2014, 34(5): 0530001. http://www.opticsjournal.net/abstract.htm?id=OJ140418000177qWtZw3

    Li Zhiwei, Xiong Wei, Shi Hailiang, et al. Correction of detector or response error for hyperspectral spatial heterodyne interferometer[J]. Acta Optica Sinica, 2014, 34(5): 0530001. http://www.opticsjournal.net/abstract.htm?id=OJ140418000177qWtZw3

    [25]

    罗海燕, 施海亮, 李志伟, 等.温度对星载空间外差干涉型光谱仪性能的影响[J].光谱学与光谱分析, 2014, 34(9): 2578–2581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201409058

    Luo Haiyan, Shi Hailiang, Li Zhiwei, et al. Thermal effect on optical properties of spatial heterodyne spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2578–2581. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201409058

    [26]

    Li Ruijie, Dang Anhong. A blind detection scheme based on modified wavelet denoising algorithm for wireless optical communications[J]. Optics Communications, 2015, 353: 165–170. doi: 10.1016/j.optcom.2015.05.026

    [27]

    Wan Shengpeng, He Xingdao, Fang Lihua. Distributed Brillouin fiber sensing based on spectrum line fitting and wavelet packet denoising[J]. Optics Communications, 2012, 285(24): 4971– 4976. doi: 10.1016/j.optcom.2012.07.075

    [28]

    Li Dongming, Zhang Lijuan, Yang Jinhua, et al. Research on wavelet-based contourlet transform algorithm for adaptive optics image denoising[J]. Optik-International Journal for Light and Electron Optics, 2016, 127(12): 5029–5034. doi: 10.1016/j.ijleo.2016.02.042

    [29]

    Wu Kaizhi, Zhang Xuming, Ding Mingyue. Curvelet based nonlocal means algorithm for image denoising[J]. AEU-International Journal of Electronics and Communications, 2014, 68(1): 37–43. doi: 10.1016/j.aeue.2013.07.011

    [30]

    李志刚, 王淑荣, 李福田.紫外傅里叶变换光谱仪干涉图数据处理[J].光谱学与光谱分析, 2000, 20(2): 203–205. http://www.docin.com/p-1641218548.html

    Li Zhigang, Wang Shurong, Li Futian. Data processing for interferogram of ultraviolet Fourier transform spectrometer[J]. Spectroscopy and Spectral Analysis, 2000, 20(2): 203–205. http://www.docin.com/p-1641218548.html

    [31]

    Mertz L. Auxiliary computation for Fourier spectrometry[J]. Infrared Physics, 1967, 7(1): 17–23. doi: 10.1016/0020-0891(67)90026-7

    [32]

    Mertz L. Transformations in optics[M]. New York: John Wiley & Sons, 1965: 21–43.

    [33]

    Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of the IEEE, 1978, 66(1): 51–83. doi: 10.1109/PROC.1978.10837

    [34]

    冯玉涛, 孙剑, 李勇, 等.宽谱段空间外差干涉光谱仪[J].光学精密工程, 2015, 23(1): 48–55. https://www.wenkuxiazai.com/doc/a70463d3fc4ffe473268ab39.html

    Feng Yutao, Sun Jian, Li Yong, et al. Broad-band spatial heterodyne interferometric spectrometer[J]. Optics and Precision Engineering, 2015, 23(1): 48–55. https://www.wenkuxiazai.com/doc/a70463d3fc4ffe473268ab39.html

  • 加载中

(13)

(1)

计量
  • 文章访问数:  8065
  • PDF下载数:  3522
  • 施引文献:  0
出版历程
收稿日期:  2017-03-04
修回日期:  2017-04-24
刊出日期:  2017-05-15

目录

/

返回文章
返回