聚合物分散液晶电控全息变间距光栅

陆飞跃, 郑继红, 王康妮, 等. 聚合物分散液晶电控全息变间距光栅[J]. 光电工程, 2017, 44(3): 351-355. doi: 10.3969/j.issn.1003-501X.2017.03.011
引用本文: 陆飞跃, 郑继红, 王康妮, 等. 聚合物分散液晶电控全息变间距光栅[J]. 光电工程, 2017, 44(3): 351-355. doi: 10.3969/j.issn.1003-501X.2017.03.011
Feiyue Lu, Jihong Zheng, Kangni Wang, et al. Electrically controlled holographic varied line-spacing grating based on polymer dispersed liquid crystal[J]. Opto-Electronic Engineering, 2017, 44(3): 351-355. doi: 10.3969/j.issn.1003-501X.2017.03.011
Citation: Feiyue Lu, Jihong Zheng, Kangni Wang, et al. Electrically controlled holographic varied line-spacing grating based on polymer dispersed liquid crystal[J]. Opto-Electronic Engineering, 2017, 44(3): 351-355. doi: 10.3969/j.issn.1003-501X.2017.03.011

聚合物分散液晶电控全息变间距光栅

  • 基金项目:
    上海市教育委员会科研创新项目(14ZZ138);上海市重点学科项目第三期项目资助(S30502)
详细信息

Electrically controlled holographic varied line-spacing grating based on polymer dispersed liquid crystal

  • Fund Project:
More Information
  • 本文报道了一种基于聚合物分散液晶的电控全息变间距光栅。采用柱面波和平面波干涉得到具有变间距的干涉条纹,并将此条纹记录于聚合物分散液晶材料中。实验分析研究了该光栅的空间频率、衍射特性和电场调控特性。光栅的空间频率变化范围和趋势与理论计算公式相匹配,实验结果表明光栅衍射效率与曝光光强和时间存在一定的关系。空间频率在530 mm-1~650 mm-1内的光栅衍射效率能达到70%以上。光栅的阈值电压为2.4 V/μm,上升沿和下降沿时间分别为300 μs和750 μs。该光栅不但具备了普通变间距光栅的优点,而且还具备了聚合物分散液晶的电场调控的特性,在光纤通信,光电探测及光谱探测等领域具有一定的应用前景。

  • Abstract:With the development of laser manufacturing technology, people can fabricate VLS plane gratings by holographic lithography. Compared with traditional gratings, the light incident on different positions of the VLS grating can diffract light with different angles, which leads to astigmatism and focusing effect. The application of VLS plane gratings reduces the number of optical elements inside the instrument and improves the resolution of the instrument. It is widely used in vacuum ultraviolet, soft X ray, optical fiber communication, sensor and many other fields.

    The fabrication of VLS plane gratings has been reported mainly by mechanical scribing and holographic lithography. Adjacent lattice spacing in VLS grating is always in nanometer scale. It is difficult to use the ruling machine to make grating and to guarantee the accuracy in the actual operation process. Holographic lithography use photosensitive material to record spherical wave or non-spherical wave interference that can form varied distance of interference fringes and further fabricate VLS spherical or plane gratings. It has the advantages of simple operation, low cost, and easy to control the line-space, which is a common method to fabricate VLS grating. The holographic polymer dispersed liquid crystal (H-PDLC), as a new photoelectric information functional device, has high diffraction efficiency, fast response, and simple preparation. Its electric-optic characteristics have been greatly improved.

    In this paper, H-PDLC material is used as a photosensitive material to record VLS interference pattern. The grating not only has advantages of ordinary VLS grating but also has electric-optic characteristics of H-PDLC. First, VLS interference pattern is generated through interference between cylindrical wave and plane wave. Second, the PDLC material is produced and put into the interference field for exposure. During polymerization, the prepolymer absorbs intense optical energy and polymerizes at the bright region, while the liquid crystal molecules are forced to diffuse from the bright region to the dark region, which forms the periodic alternating LC-rich region and polymer-rich region, corresponding to the interference optical pattern. Characteristics such as spatial frequency, diffraction and electric-optic, are analyzed by experiments. The results show that the trend and range of grating period match well with the theoretical formula. The relationship between diffraction efficiency and exposure intensity, as well as time is studied. The grating diffraction efficiency can be achieved up more than 70% with spatial frequency from 530 mm-1 to 650 mm-1. In addition, the grating has good electrically controlled property. The threshold voltage is 2.4 V/μm, and the rise time and fall time are 300 μs and 750 μs, respectively.

  • 加载中
  • 图 1  变间距干涉条纹模拟图.

    Figure 1.  Simulated interference pattern of varied-line-spacing stripe.

    图 2  制作H-PDLC变间距光栅的全息光路.

    Figure 2.  Experimental setup for fabricating VLS H-PDLC.

    图 3  变间距光栅的空间频率测量图.

    Figure 3.  Measurement setup for line-spacing of grating.

    图 4  光栅的空间频率变化曲线.

    Figure 4.  Varied curve for line-spacing of grating.

    图 5  不同参数下的光栅空间频率对比曲线. (a) D=43.5 cm,α=17.55°和20.18°. (b) α=17.55°,D=37.2 cm和43.5 cm.

    Figure 5.  Line-spacing variation with different fabrication parameters. (a) D=43.5 cm, α=17.55° and 20.18°. (b) α=17.55°, D=37.2 cm and 43.5 cm.

    图 6  光栅衍射效率及光电特性测量光路图.

    Figure 6.  Measurement setup for diffraction efficiency and electricoptic characteristic of grating.

    图 7  不同曝光强度的光栅衍射效率图.

    Figure 7.  Diffraction efficiency of gratings with different exposure intensities.

    图 8  不同曝光时间的光栅衍射效率图.

    Figure 8.  Diffraction efficiency of gratings with different exposure time.

    图 9  衍射效率随驱动电压的关系曲线.

    Figure 9.  Measured diffraction efficiency as a function of driving voltage.

    图 10  光栅的响应时间测量图. (a) 上升沿时间. (b) 下降沿时间.

    Figure 10.  Measured response time of gratings. (a) Rise time. (b) Fall time.

  • [1]

    Hall J T. Focal properties of a plane grating in a convergent beam[J]. Applied Optics, 1966, 5(6): 1051‒1055. doi: 10.1364/AO.5.001051

    [2]

    时轮, 郝德阜.变栅距衍射光栅的原理及应用[J].光学精密工程, 2001, 9(3): 284‒287. http://www.doc88.com/p-147577457658.html

    Shi Lun, Hao Defu. Theory and applications of varied line-space gratings[J]. Optics and Precision Engineering, 2001, 9(3): 284‒287. http://www.doc88.com/p-147577457658.html

    [3]

    刘正坤, 谭鑫, 徐向东, 等.变栅距光栅光谱分辨研究[J].光学精密工程, 2008, 16(7): 1153‒1157. http://www.eope.net/fileup/PDF/2007-0653.pdf

    Liu Zhengkun, Tan Xin, Xu Xiangdong, et al. Study on re-solving power of varied line-space grating[J]. Optics and Precision Engineering, 2008, 16(7): 1153‒1157. http://www.eope.net/fileup/PDF/2007-0653.pdf

    [4]

    靳飞飞, 刘世炳, 朱效立, 等.自聚焦变栅距光栅设计、制作及特性研究[J].光电工程, 2009, 36(11): 48‒52. doi: 10.3969/j.issn.1003-501X.2009.11.011

    Jin Feifei, Liu Shibing, Zhu Xiaoli, et al. Design, fabrication and self-focusing properties of varied line-space grating[J]. Opto- Electronic Engineering, 2009, 36(11): 48‒52. doi: 10.3969/j.issn.1003-501X.2009.11.011

    [5]

    时轮, 胡德金, 郝德阜.相位扫描法制作变栅距光栅[J].光电工程, 2004, 31(11): 35‒38. doi: 10.3969/j.issn.1003-501X.2004.11.010

    Shi Lun, Hu Dejin, Hao Defu. Phase scanning method for fabricating varied line-space gratings[J]. Opto-Electronic En-gineering, 2004, 31(11): 35‒38. doi: 10.3969/j.issn.1003-501X.2004.11.010

    [6]

    Lou Jun, Liu Ying, Fu Shaojun, et al. Design of varia-ble-line-space plane gratings with holographic recording[J]. Proceedings of SPIE, 2004, 5636: 551‒559.

    [7]

    白慧君, 汪岳峰, 王军阵, 等.激光体光栅光谱合成的串扰分析[J].光学仪器, 2012, 34(5): 61‒65. http://www.cqvip.com/QK/93244X/201205/43769241.html

    Bai Huijun, Wang Yuefeng, Wang Junzhen, et al. Cross-talk analysis of spectral beam combining with volume bragg grat-ings[J]. Optical Instruments, 2012, 34(5): 61‒65. http://www.cqvip.com/QK/93244X/201205/43769241.html

    [8]

    刘超, 孙祺, 柴雅婷, 等.倾斜光纤光栅周期对其透射谱的影响[J].光学仪器, 2014, 36(1): 58‒61. http://d.wanfangdata.com.cn/Periodical_gxyq201401012.aspx

    Liu Chao, Sun Qi, Chai Yating, et al. Impact of tilted fiber bragg grating period on its transmission spectrum[J]. Optical Instru-ments, 2014, 36(1): 58‒61. http://d.wanfangdata.com.cn/Periodical_gxyq201401012.aspx

    [9]

    Lucchetta D E, Karapinar R, Manni A, et al. Phase-only modulation by nanosized polymer-dispersed liquid crystals[J]. Journal of Applied Physics, 2002, 91(9): 6060‒6065. doi: 10.1063/1.1468252

    [10]

    马骥, 刘永刚, 于涛, 等.全息法制备二维电调谐聚合物/液晶光栅[J].液晶与显示, 2005, 20(2): 115‒118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs200502007

    Ma Ji, Liu Yonggang, Yu Tao, et al. Preparation of two-dimensional electrically tuning polymer/liquid crystal grating by holography[J]. Chinese Journal of Liquid Crystals and Dis-plays, 2005, 20(2): 115‒118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yjyxs200502007

    [11]

    马骥, 刘永刚, 阮圣平, 等.光刻法制备聚合物/液晶光栅[J].功能材料与器件学报, 2003, 9(2): 309‒312. https://www.wenkuxiazai.com/doc/f069bad0d5bbfd0a795673c7.html

    Ma Ji, Liu Yonggang, Ruan Shengping, et al. Preparing polymer/liquid crystal grating by photolithography[J]. Journal of Functional Materials and Devices, 2003, 9(2): 309‒312. https://www.wenkuxiazai.com/doc/f069bad0d5bbfd0a795673c7.html

    [12]

    刘剑, 王明乐, 高刘德, 等.偶氮苯介晶基元取向方式对其取向稳定性影响[J].光子学报, 2011, 40(6): 902‒906.

    Liu Jian, Wang Mingle, Gao Liude, et al. Orientation mode of azobenzene mesogens and their effects on the orientation stability[J]. Acta Photonica Sinica, 2011, 40(6): 902‒906.

    [13]

    陈建文, 傅淑芬, 张大可, 等.制作变间距光栅的新方法[J].中国激光, 1986, 13(5): 291‒294, 309. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz198605010&dbname=CJFD&dbcode=CJFQ

    Chen Jianwen, Fu Shufen, Zhang Dake, et al. Producing grating with variable spacing[J]. Chinese Journal of Lasers, 1986, 13(5): 291‒294, 309. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jjzz198605010&dbname=CJFD&dbcode=CJFQ

    [14]

    张梦华, 郑继红, 唐平玉, 等.纳米银掺杂的高效率全息聚合物分散液晶光栅制备[J].光学学报, 2013, 33(1): 0105002. http://www.opticsjournal.net/abstract.htm?id=OJ121122000059C9FbHe

    Zhang Menghua, Zheng Jihong, Tang Pingyu, et al. High efficiency nano-silver-doped holographic polymer dispersed liquid crystal grating[J]. Acta Optica Sinica, 2013, 33(1): 0105002. http://www.opticsjournal.net/abstract.htm?id=OJ121122000059C9FbHe

    [15]

    宋静, 马骥, 刘永刚, 等.聚合物网络稳定液晶光栅的制备与特性研究[J].光电工程, 2006, 33(4): 141‒144.

    Song Jing, Ma Ji, Liu Yonggang, et al. Preparation and elec-tric-optical characteristic of polymer network stabilized liquid crystal grating[J]. Opto-Electronic Engineering, 2006, 33(4): 141‒144.

  • 加载中

(10)

计量
  • 文章访问数:  7469
  • PDF下载数:  3502
  • 施引文献:  0
出版历程
收稿日期:  2016-08-30
修回日期:  2016-11-06
刊出日期:  2017-03-15

目录

/

返回文章
返回