Jiao Lin, Dapeng Wang, Guangyuan Si. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003
Citation: Jiao Lin, Dapeng Wang, Guangyuan Si. Recent progress on plasmonic metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 289-296. doi: 10.3969/j.issn.1003-501X.2017.03.003

Recent progress on plasmonic metasurfaces

    Fund Project:
More Information
  • Conventional optical systems (lenses, wave-plates and holograms) shape the wavefront of light within the range of an optical path that is much larger than the wavelength of light. The control of amplitude, phase and polarization of light depends on the dynamic optical path difference accumulated through the reflection, refraction and diffraction. Recently, planar ultrathin optical components have attracted tremendous attention by removing such traditional limitations. In this paper, we mainly review the recent progress of plasmonic metasurfaces with respect to wavefront shaping of free space and localized optical fields, including the fundamental mechanisms and applications. Both the drawbacks of existing technology and potential development are highlighted.
  • 加载中
  • [1] Chen P Y, Soric J, Alù A. Invisibility and cloaking based on scattering cancellation[J].Advanced Materials, 2012, 24(44): OP281-OP304.

    Google Scholar

    [2] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310- 1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [3] Liu Wei, Zhang Jianfa, Lei Bing, et al. Invisible nanowires with interfering electric and toroidal dipoles[J]. Optics Letters, 2015, 40(10): 2293-2296. doi: 10.1364/OL.40.002293

    CrossRef Google Scholar

    [4] Valentine J, Zhang Shuang, Zentgraf T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379. doi: 10.1038/nature07247

    CrossRef Google Scholar

    [5] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [6] Wu Aimin, Li Hao, Du Junjie, et al. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts[J]. Nano Letters, 2015, 15(3): 2055-2060. doi: 10.1021/nl5049516

    CrossRef Google Scholar

    [7] Shalaev V. Optical negative-index metamaterials[J]. Nature Photonics, 2007, 1(1): 41-48. doi: 10.1038/nphoton.2006.49

    CrossRef Google Scholar

    [8] Genov D A, Zhang Shuang, Zhang Xiang. Mimicking celestial mechanics in metamaterials[J].Nature Physics, 2009, 5(9): 687-692. doi: 10.1038/nphys1338

    CrossRef Google Scholar

    [9] Echtermeyer T J, Milana S, Sassi U, et al. Surface plasmon polariton graphene photodetectors[J]. Nano Letters, 2016, 16(1): 8-20. doi: 10.1021/acs.nanolett.5b02051

    CrossRef Google Scholar

    [10] Demetriadou A, Kornyshev A A. Principles of nanoparticle imaging using surface plasmons[J].New Journal of Physics, 2015, 17: 013041. doi: 10.1088/1367-2630/17/1/013041

    CrossRef Google Scholar

    [11] Alizadeh M H, Reinhard B M. Enhanced optical chirality through locally excited surface plasmon polaritons[J]. ACS Photonics, 2015, 2(7): 942-949. doi: 10.1021/acsphotonics.5b00151

    CrossRef Google Scholar

    [12] Zhang Haochi, Fan Yifeng, Guo Jian, et al. Second-harmonic generation of spoof surface plasmon polaritons using nonlinear plasmonic metamaterials[J]. ACS Photonics, 2016, 3(1): 139- 146. doi: 10.1021/acsphotonics.5b00580

    CrossRef Google Scholar

    [13] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570

    CrossRef Google Scholar

    [14] Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays[J]. Reports on Progress in Physics, 2009, 72(6): 064401. doi: 10.1088/0034-4885/72/6/064401

    CrossRef Google Scholar

    [15] Johns P, Yu Kuai, Devadas M S, et al. Role of resonances in the transmission of surface plasmon polaritons between nanostructures[J]. ACS Nano, 2016, 10(3): 3375-3381. doi: 10.1021/acsnano.5b07185

    CrossRef Google Scholar

    [16] Wang Qianjin, Li Jiaqi, Huang Chengping, et al. Enhanced optical transmission through metal films with rotation- symmetrical hole arrays[J]. Applied Physics Letters, 2005, 87(9): 091105. doi: 10.1063/1.2034120

    CrossRef Google Scholar

    [17] Glybovski S B, Tretyakov S A, Belov P A, et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 2016, 634: 1-72. doi: 10.1016/j.physrep.2016.04.004

    CrossRef Google Scholar

    [18] Zhao Yang, Alù A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Letters, 2013, 13(3): 1086-1091. doi: 10.1021/nl304392b

    CrossRef Google Scholar

    [19] Jiang Zhihao, Lin Lan, Ma Ding, et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J]. Scientific Reports, 2014, 4: 7511.

    Google Scholar

    [20] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36. doi: 10.1038/nnano.2015.304

    CrossRef Google Scholar

    [21] Yang Yuanmu, Kravchenko I I, Briggs D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753. doi: 10.1038/ncomms6753

    CrossRef Google Scholar

    [22] Paniagua-Domínguez R, Yu Yefeng, Miroshnichenko A E, et al. Generalized brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362. doi: 10.1038/ncomms10362

    CrossRef Google Scholar

    [23] Dai Yanmeng, Ren Wenzhen, Cai Hongbing, et al. Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure[J]. Optics Express, 2014, 22(7): 7465-7472. doi: 10.1364/OE.22.007465

    CrossRef Google Scholar

    [24] Pors A, Nielsen M G, Bozhevolnyi S I. Broadband plasmonic half-wave plates in reflection[J]. Optics Letters, 2013, 38(4): 513-515. doi: 10.1364/OL.38.000513

    CrossRef Google Scholar

    [25] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [26] Gorodetski Y, Niv A, Kleiner V, et al. Observation of the spin-based plasmonic effect in nanoscale structures[J]. Physical Review Letters, 2008, 101(4): 043903. doi: 10.1103/PhysRevLett.101.043903

    CrossRef Google Scholar

    [27] Bliokh K Y, Gorodetski Y, Kleiner V, et al. Coriolis effect in optics: unified geometric phase and spin-hall effect[J]. Physical Review Letters, 2008, 101(3): 030404. doi: 10.1103/PhysRevLett.101.030404

    CrossRef Google Scholar

    [28] Shitrit N, Bretner I, Gorodetski Y, et al. Optical spin hall effects in plasmonic chains[J]. Nano Letters, 2011, 11(5): 2038-2042. doi: 10.1021/nl2004835

    CrossRef Google Scholar

    [29] Gorodetski Y, Shitrit N, Bretner I, et al. Observation of optical spin symmetry breaking in nanoapertures[J]. Nano Letters, 2009, 9(8): 3016-3019. doi: 10.1021/nl901437d

    CrossRef Google Scholar

    [30] Lin Jiao, Genevet P, Kats M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274. doi: 10.1021/nl402039y

    CrossRef Google Scholar

    [31] Tan P S, Yuan X C, Lin J, et al. Surface plasmon polaritons generated by optical vortex beams[J]. Applied Physics Letters, 2008, 92(11): 111108. doi: 10.1063/1.2890058

    CrossRef Google Scholar

    [32] Tan P S, Yuan X C, Lin J, et al. Analysis of surface plasmon interference pattern formed by optical vortex beams[J]. Optics Express, 2008, 16(22): 18451-18456. doi: 10.1364/OE.16.018451

    CrossRef Google Scholar

    [33] Zhan Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J].Advances in Optics and Photonics, 2009, 1(1): 1-57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [34] Willner A E, Huang F, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66-106. doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [35] Genevet P, Lin Jiao, Kats M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278. doi: 10.1038/ncomms2293

    CrossRef Google Scholar

    [36] Du Luping, Kou Shanshan, Balaur E, et al. Broadband chirality-coded meta-aperture for photon-spin resolving[J]. Nature Communications, 2015, 6: 10051. doi: 10.1038/ncomms10051

    CrossRef Google Scholar

    [37] Wang Xiaoli, Tang Zhiyong. Circular dichroism studies on plasmonic nanostructures[J].Small, 2017, 13(1): 1601115. doi: 10.1002/smll.v13.1

    CrossRef Google Scholar

    [38] Deng Haidong, Chen Xingyu, Xu Yi, et al. Single protein sensing with asymmetric plasmonic hexamer via fano resonance enhanced two-photon luminescence[J]. Nanoscale, 2015, 7(48): 20405-20413. doi: 10.1039/C5NR04118J

    CrossRef Google Scholar

    [39] Neugebauer M, Woźniak P, Bag A, et al. Polarization-controlled directional scattering for nanoscopic position sensing[J]. Nature Communications, 2016, 7: 11286. doi: 10.1038/ncomms11286

    CrossRef Google Scholar

    [40] Wei Shibiao, Lei Ting, Du Luping, et al. Sub-100nm resolution PSIM by utilizing modified optical vortices with fractional topological charges for precise phase shifting[J]. Optics Express, 2015, 23(23): 30143-30148. doi: 10.1364/OE.23.030143

    CrossRef Google Scholar

    [41] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface plasmon interference nanolithography[J].Nano Letters, 2005, 5(5): 957- 961. doi: 10.1021/nl0506094

    CrossRef Google Scholar

    [42] Tame M S, McEnery K R, Özdemir Ş K, et al. Quantum plasmonics[J]. Nature Physics, 2013, 9(6): 329-340. doi: 10.1038/nphys2615

    CrossRef Google Scholar

    [43] Tetienne J P, Lombard A, Simpson D A, et al. Scanning nanospin ensemble microscope for nanoscale magnetic and thermal imaging[J]. Nano Letters, 2016, 16(1): 326-333. doi: 10.1021/acs.nanolett.5b03877

    CrossRef Google Scholar

    [44] Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072- 1074. doi: 10.1126/science.1224823

    CrossRef Google Scholar

    [45] Ye Jian, Wen Fangfang, Sobhani H, et al. Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS[J]. Nano Letters, 2012, 12(3): 1660- 1667. doi: 10.1021/nl3000453

    CrossRef Google Scholar

    [46] Urban M J, Zhou Chao, Duan Xiaoyang, et al. Optically resolving the dynamic walking of a plasmonic walker couple[J]. Nano Letters, 2015, 15(12): 8392-8396. doi: 10.1021/acs.nanolett.5b04270

    CrossRef Google Scholar

    [47] Mühlenbernd H, Georgi P, Pholchai N, et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces[J]. ACS Photonics, 2016, 3(1): 124-129. doi: 10.1021/acsphotonics.5b00536

    CrossRef Google Scholar

    [48] O'Connor D, Ginzburg P, Rodríguez-Fortuño F J, et al. Spin-orbit coupling in surface plasmon scattering by nanostructures[J]. Nature Communications, 2014, 5: 5327. doi: 10.1038/ncomms6327

    CrossRef Google Scholar

    [49] Gubbin C R, Martini F, Politi A, et al. Strong and coherent coupling between localized and propagating phonon polaritons[J]. Physical Review Letters, 2016, 116(24): 246402. doi: 10.1103/PhysRevLett.116.246402

    CrossRef Google Scholar

    [50] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [51] 赵泽宇, 蒲明博, 王彦钦, 等.广义折反射定律[J].光电工程, 2017, 44(2): 129-139.

    Google Scholar

    Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J].Opto-Electronic Engineering, 2017, 44(2): 129-139.

    Google Scholar

    [52] Chen Houtong, Taylor A J, Yu Nanfang. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401

    CrossRef Google Scholar

    [53] Zhang Lei, Mei Shengtao, Huang Kun, et al. Advances in full control of electromagnetic waves with metasurfaces[J]. Advanced Optical Materials, 2016, 4(6): 818-833. doi: 10.1002/adom.v4.6

    CrossRef Google Scholar

    [54] Lin Jiao, Dellinger J, Genevet P, et al. Cosine-gauss plasmon beam: a localized long-range nondiffracting surface wave[J]. Physical Review Letters, 2012, 109(9): 093904. doi: 10.1103/PhysRevLett.109.093904

    CrossRef Google Scholar

    [55] Wei Shibiao, Lin Jiao, Wang Qian, et al. Singular diffraction-free surface plasmon beams generated by overlapping phase-shifted sources[J]. Optics Letters, 2013, 38(7): 1182-1184. doi: 10.1364/OL.38.001182

    CrossRef Google Scholar

    [56] Wei Shibiao, Lin Jiao, Wang Rong, et al. Self-imaging generation of plasmonic void arrays[J]. Optics Letters, 2013, 38(15): 2783-2785. doi: 10.1364/OL.38.002783

    CrossRef Google Scholar

    [57] López-Tejeira F, Rodrigo S G, Martín-Moreno L, et al. Efficient unidirectional nanoslit couplers for surface plasmons[J]. Nature Physics, 2007, 3(5): 324-328. doi: 10.1038/nphys584

    CrossRef Google Scholar

    [58] Baron A, Devaux E, Rodier J C, et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons[J]. Nano Letters, 2011, 11(10): 4207-4212. doi: 10.1021/nl202135w

    CrossRef Google Scholar

    [59] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746

    CrossRef Google Scholar

    [60] Lin Jiao, Wang Qian, Yuan Guanghui, et al. Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves[J]. Scientific Reports, 2015, 5(1): 10529.

    Google Scholar

    [61] Kou Shanshan, Yuan Guanghui, Wang Qian, et al. On-chip photonic fourier transform with surface plasmon polaritons[J]. Light: Science & Applications, 2016, 5: e16034.

    Google Scholar

  • Abstract:Organic light emitting devices (OLEDs) have some performances, such as low power consumption, ultra-light, fast response speed, high-definition, self-luminous and viewing angle, etc, which are expected to become a mainstream of the next generation of display devices. It is found that the microcavity structure can narrow the luminescence spectrum of the thin film and improve the luminescence color purity of the device effectively. We prepared a light-emitting device by using high vacuum deposition process and high-precision film thickness detector. This paper designed and prepared the green OLED devices based on double metallic mirrors in microcavity structures, of which the process was by vacuum evaporation and double metallic mirrors of devices: Al/MO3 as device of anode and hole injection layer, and LiF/Al as device cathode and electron injection layers. Organic material C545T was as green microcavity device of light-emitting materials. The device structure is Al(20 nm)/MoO3(4 nm)/2T-NATA(10 nm)/NPB(15 nm)/NPB:C545T(x%, 20 nm)/Alq3: C545T (4%, 20 nm)/Bphen (35 nm)/LiF(1 nm)/Al(200 nm), where x is the doping concentration, denoted as device B1. In order to analyze the microcavity effect, another preparation was made based on the ITO reference device B2. The microcavity effect of the device was analyzed by comparing the device's luminous brightness, luminous efficiency and luminescent color purity. The experimental results show that the device has the best optical and electrical properties when the doping concentration of device B1 is 3%. We found B1 and B2 color coordinates, (0.289, 0.620) and (0.317, 0.557), respectively. It can be judged that the luminescent color of the microcavity device B1 is purer. Then, microcavity device for microcavity effects could improve forward direction luminance intensity and luminance efficiency. At 100 mA/cm2, the brightness of devices B1 and B2 are 5076 cd/m2and 4818 cd/m2, and the maximum brightness of the both devices are 9277.7 cd/m2 and 10440 cd/m2. At 100 mA/cm2, luminance efficiencies of devices B1 and B2 are 6.0 cd/A and 5.61 cd/A, and the maximum luminance efficiencies of the both devices were 8.6 cd/A and 7.97 cd/A. We can conclude that, compared with the reference device, the green microcavity device has better luminous efficiency and color purity than the reference device under the effect of the microcavity, and the photoelectric performance of the device is best when the C545T doping concentration is 3% and the thickness is 20 nm.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(11699) PDF downloads(5955) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint