The refraction and reflection are basic phenomena in the propagation of all kinds of waves, such as light waves, electromagnetic waves and acoustic waves, when they encounter the interface between different kinds of materials. Recently, it is discovered that the traditional optical laws regarding refraction and reflection can be rewritten when artificially designed subwavelength arrays are fabricated on the interfaces. The revised laws provide promising alternatives to achieve imaging, multi-physics decoupling and holographic display. Here we review the recent progresses in this emerging topic, including the refraction and reflection behavior in various materials configurations, the fundamental theories and practical applications. Finally, based on our recent results, the shortcomings of current researches are analyzed with a look towards the future trends of the overall area.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
The generalized laws of refraction and reflection
Author Affiliations

First published at:Feb 15, 2017
Opto-Electronic Engineering Vol. 44, Issue 02, pp. 129 - 139 (2017) DOI:10.3969/j.issn.1003-501X.2017.02.001
Abstract
Overview
References
1 罗先刚. 亚波长电磁学[M]. 北京: 科学出版社, 2016.
2 Luo Xiangang. Subwavelength electromagnetics[J]. Frontiers of Optoelectronics, 2016, 9(2): 138–150.
3 Luo Xiangang. Principles of electromagnetic waves in metasur-faces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.
4 Hong Minghui. Metasurface wave in planar nano-photonics[J]. Science Bulletin, 2016, 61: 112–113.
5 Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780–4782.
6 Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534–537.
7 Munk B A. Metamaterials: critique and alternatives[M]. Hoboken: John Wiley & Sons, 2009.
8 Grzegorczyk T M, Nikku M, Chen X D, et al. Refraction laws for anisotropic media and their application to left-handed meta-materials[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1443–1450.
9 Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.
10 Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.
11 Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.
12 Sun Shulin, He Qiong, Zhou Lei. Electromagnetic metasurfaces [J]. Physics, 2015, 44(6): 366–376.
孙树林, 何琼, 周磊. 电磁超表面[J]. 物理, 2015, 44(6): 366– 376.
13 Minovich A E, Miroshnichenko A E, Bykov A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser & Photonics Re-views, 2015, 9(2): 195–213.
14 Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials[J]. Nature Reviews Materials, 2016, 1(12): 16067.
15 Lalanne P, Astilean S, Chavel P, et al. Blazed binary subwave-length gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081–1083.
16 Smith D R, Mock J J, Starr A F, et al. Gradient index meta-materials[J]. Physical Review E, 2005, 71(3): 36609.
17 Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885.
18 Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396.
19 Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral me-ta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365.
20 Bliokh K Y, Rodríguez-Fortuño F J, Nori F, et al. Spin-orbit interactions of light[J]. Nature Photonics, 2015, 9(12): 796–808.
21 Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Ap-plications, 2017, 6: e16276.
22 Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307–313.
23 Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum genera-tion[J]. ACS Photonics, 2016, 3(11): 2022–2029.
24 Larouche S, Smith D R. Reconciliation of generalized refraction with diffraction theory[J]. Optics Letters, 2012, 37(12): 2391– 2393.
25 Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D me-ta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102.
26 Ni X J, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310–1314.
27 Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822.
28 Poddubny A, Iorsh I, Belov P, et al. Hyperbolic metamaterials[J]. Nature Photonics, 2013, 7(12): 948–957.
29 Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3–22.
郭迎辉, 蒲明博, 马晓亮, 等. 电磁超构材料色散调控研究进展[J]. 光电工程, 2017, 44(1): 3–22.
30 Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579–13584.
31 Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in meta¬material with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911.
32 Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248–1256.
33 Liu Ling, Gao Ping, Liu Kaipeng, et al. Nanofocusing of circu-larly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials[J]. Materials Horizons, 2017, doi: 10.1039/C6MH 00535G.
34 Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585–599.
王长涛, 赵泽宇, 高平, 等. 表面等离子体超衍射光学光刻[J]. 科学通报, 2016, 61(6): 585–599.
35 Moore D T. Gradient-index optics: a review[J]. Applied Optics, 1980, 19(7): 1035–1038.
36 Arai J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dim¬ensional images[J]. Applied Optics, 1998, 37(11): 2034–2045.
37 Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782.
38 Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777–1780.
39 Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.
40 Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901
41 Wang Wei, Xing Hui, Fang Liang, et al. Far-field imaging device: planar hyperlens with magnification using multi-layer meta-material[J]. Optics Express, 2008, 16(25): 21142–21148.
42 Han S, Xiong Y, Genov D, et al. Ray optics at a deep-sub-wavelength scale: a transformation optics approach[J]. Nano Letters, 2008, 8(12): 4243–4247.
43 Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwave-length demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065–1072.
44 Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6(98): 95973–95978.
45 Sun J B, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905– 7909.
46 Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129–132.
47 Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124.
48 Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106.
49 Sheng C, Liu H, Wang Y, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902–906.
50 Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759.
51 罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜: 中国,ZL200710177752.5[P]. 2008-4-9.
52 Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase- change metasurface[J]. Scientific Reports, 2015, 5: 15020.
53 Sun Hongbo. The mystical interlinks: Mechanics, religion or optics?[J]. Science China-Physics, Mechanics & Astronomy, 2016, 59: 614202.
54 Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805– 18812.
55 Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on low-Q gradient meta-surface[J]. AIP Advances, 2013, 3(5): 052136.
56 Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Let-ters, 2013, 110(19): 197401.
57 Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D meta-materials[J]. Advanced Optical Materials, 2016, 4(5): 659–663.
58 Verslegers L, Catrysse P B, Yu Z F, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235–238.
59 Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as highly efficient and compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524.
60 Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194.
61 Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Pho-tonics Reviews, 2015, 9(6): 713–719.
62 Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Ex-press, 2010, 18(11): 11683–11688.
63 Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781.
64 Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Qua-si-continuous metasurface for ultra-broadband and polariza-tion-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733.
65 Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technology, 2017, 2(2), doi: 10.1002/admt.201600201.
66 Hashemi H, Zhang B L, Joannopoulos J D, et al. De-lay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903.
67 Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared ab-sorption[J]. Optics Letters, 2012, 37(11): 2133–2135.
68 Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic me-ta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.
69 Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434.
70 Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312.
71 Decker M, Staude I, Falkner M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813–820.
72 Arbabi E, Arbabi A, Kamali S M, et al. High efficiency dou-ble-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms[J]. Optics Express, 2016, 24(16): 18468–18477.
73 Pan Wenbo, Huang Cheng, Chen Po, et al. A beam steering horn antenna using active frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(12): 6218–6223.
74 Huang Cheng, Pan Wenbo, Ma Xiaoliang, et al. Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4801–4810.
Export Citations as:
For
Get Citation:
Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129–139.
Issue Cover
Cited By(11)
华中科技大学, 2019
北京邮电大学, 2019
中国科学院大学(中国科学院光电技术研究所), 2019
中国科学院大学(中国科学院光电技术研究所), 2019
西安电子科技大学, 2019
光学精密工程, 2018
光电工程, 2017
光电工程, 2017
光电工程, 2017
物理学报, 2017
物理学报, 2017
Related Articles