Chen Po. Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 82-86. doi: 10.3969/j.issn.1003-501X.2017.01.008
Citation: Chen Po. Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 82-86. doi: 10.3969/j.issn.1003-501X.2017.01.008

Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials

More Information
  • We propose the design of anisotropic metamaterials with cascading meta-atoms. Each meta-atom array behaves as an impedance-tuned interface and dramatically modifies the complex reflection and transmission coefficients. By engineering the frequency-dependent impedances, the reflection phase difference along the two axes of anisotropic metamaterials approximates to a constant in a wide range. We numerically demonstrate the proposed anisotropic metamaterials can accomplish achromatic polarization transformation from 0.5 THz to 3.1 THz. The polarization conversion ratio is higher than 80%, which exhibits excellent agreements with the theoretical calculation. Such design is scalable to other bands and can provide helpful guidance in broadband devices design.

  • 加载中
  • [1] Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics[J]. Applied Physics Letters, 1983, 42(6): 492-494. doi: 10.1063/1.93979

    CrossRef Google Scholar

    [2] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10

    CrossRef Google Scholar

    [3] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. doi: 10.1126/science.1177031

    CrossRef Google Scholar

    [4] Yu Nanfang, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u

    CrossRef Google Scholar

    [5] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [6] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.

    Google Scholar

    [7] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [8] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746

    CrossRef Google Scholar

    [9] Lin Jiao, Wang Qian, Yuan Guanghui, et al. Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves[J]. Scientific Reports, 2015, 5: 10529. doi: 10.1038/srep10529

    CrossRef Google Scholar

    [10] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [11] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [12] Li Zhongyang, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Letters, 2015, 15(3): 1615-1621. doi: 10.1021/nl5041572

    CrossRef Google Scholar

    [13] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [14] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces[J]. Plasmonics, 2016, 11(1): 337-344. doi: 10.1007/s11468-015-0055-7

    CrossRef Google Scholar

    [15] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154

    CrossRef Google Scholar

    [16] Sun Jingbo, Liu Lingyun, Dong Guoyan, et al. An extremely broad band metamaterial absorber based on destructive interference[J]. Optics Express, 2011, 19(22): 21155-21162. doi: 10.1364/OE.19.021155

    CrossRef Google Scholar

    [17] Cui Yanxia, Fung K H, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447. doi: 10.1021/nl204118h

    CrossRef Google Scholar

    [18] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs[J]. Plasmonics, 2014, 9(4): 951-957. doi: 10.1007/s11468-014-9701-8

    CrossRef Google Scholar

    [19] Chin J Y, Gollub J N, Mock J J, et al. An efficient broadband metamaterial wave retarder[J]. Optics Express, 2009, 17(9): 7640-7647. doi: 10.1364/OE.17.007640

    CrossRef Google Scholar

    [20] Jen Y J, Lakhtakia A, Yu C W, et al. Biologically inspired achromatic waveplates for visible light[J]. Nature Communications, 2011, 2: 363. doi: 10.1038/ncomms1358

    CrossRef Google Scholar

    [21] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491

    CrossRef Google Scholar

    [22] Lier E, Werner D H, Scarborough C P, et al. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10(3): 216-222. doi: 10.1038/nmat2950

    CrossRef Google Scholar

    [23] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [24] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885

    CrossRef Google Scholar

    [25] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162

    CrossRef Google Scholar

    [26] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    CrossRef Google Scholar

    [27] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566

    CrossRef Google Scholar

    [28] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [29] Wang Dacheng, Zhang Lingchao, Gong Yandong, et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308.

    Google Scholar

    [30] Jiang Shangchi, Xiong Xiang, Hu Yuansheng, et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Physical Review X, 2014, 4(2): 021026. doi: 10.1103/PhysRevX.4.021026

    CrossRef Google Scholar

    [31] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [32] Zhang Zuojun, Luo Jun, Song Maowen, et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Applied Physics Letters, 2015, 107(24): 241904. doi: 10.1063/1.4937006

    CrossRef Google Scholar

    [33] Isbell D. Log periodic dipole arrays[J]. IRE Transactions on Antennas and Propagation, 1960, 8(3): 260-267. doi: 10.1109/TAP.1960.1144848

    CrossRef Google Scholar

    [34] Carrel R. The design of log-periodic dipole antennas[C]. Proceedings of IRE International Convention Record, New York, NY, USA, 1961: 61-75.

    Google Scholar

    [35] Shelton P J. Wideband polarization-transforming electromagnetic mirror: US, 4228437[P]. 1980-10-14.

    Google Scholar

  • Abstract: The ability to manipulate the polarization of electromagnetic waves is sought-after for numerous applications. Traditional polarization rotation devices utilizing natural occurring birefringence or total internal reflection effects are bulky. As an alternative solution, metamaterial-based converters exhibiting strong anisotropy or chiral can be extremely compact and thus flourished in the last decade. Nevertheless, metamaterial-based schemes suffer from the narrow bandwidth due to their highly dispersive meta-molecules.

    Achromatic polarization converters operating in the terahertz band are highly anticipated due to the lack of suitable natural materials for terahertz device applications. Many excellent attempts have been carried out to extend the working bandwidth in different frequency regimes but at the cost of increased physical thickness, fundamentally ruled by the theoretical thickness-to-bandwidth ratio limit. Dispersion engineering is a promising method to approach the thickness-to-bandwidth ratio limit, which has been implemented in various meta-atoms such as, cross- and I-shaped metallic patch as well as split-ring resonators for broadband electromagnetic absorption and polarization manipulation.

    In this paper, we propose the design of anisotropic metamaterials constructed by cascading meta-atoms with orthogonal orientation for two-dimensional dispersion management. Each meta-atom array behaves as an impedance-tuned interface, which dramatically modifies the complex reflection and transmission coefficients at the impedance interface. The cascading meta-atoms behave like a log-period configuration, well-known in broadband antenna design. By engineering the frequency-dependent impedances of the orthogonal meta-atoms, the reflection phase difference along the two axes of anisotropic metamaterials can approximate to a constant in a wide range.

    Based on the above design principle, we numerically demonstrate the proposed anisotropic metamaterials with full released dispersion engineering ability in two dimensions can accomplish achromatic polarization transformation from 0.5 THz to 3.1 THz, i.e., the operation bandwidth is beyond 2-octave band. The polarization conversion ratio is higher than 80%, which exhibits excellent agreement with the theoretical calculation. Such design is scalable to other bands and can provide helpful guidance in broadband devices design.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(8464) PDF downloads(2167) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint