三维超材料制造技术现状与趋势

田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006
引用本文: 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006
Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006
Citation: Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

三维超材料制造技术现状与趋势

  • 基金项目:
    国家自然科学基金项目(51105300)、教育部博士点基金(20110201120075)、教育部留学回国人员启动经费(2013回国基金11)以及中央高校基本科研业务费资助的项目
详细信息

Current situation and trend of fabrication technologies for three-dimensional metamaterials

  • Fund Project:
More Information
  • 三维超材料是具有三维空间特定排布的亚波长人工周期结构,具有自然材料不具备的超常规物理性能。本文以三维超材料的电磁调控技术为线索,简要论述了近年来三维超材料在基础研究和制造工艺方面的研究现状;梳理了目前三维超材料的制造方法,包含印刷电路板及组装的方法、机械加工方法、3D打印技术、微纳制造工艺;选取电磁隐身罩、透镜天线、吸波器、柔性超材料等代表性应用类别,简述了三维超材料器件的电磁调控方法与实现手段,所涉及的超材料种类包括左手超材料、渐变折射率超材料、智能超材料等。基于目前三维超材料研究领域待解决的问题,对今后三维超材料的发展趋势进行了探讨。

  • Abstract: Three dimensional (3D) metamaterials are artificial micro-structures periodically arranged in three-dimensional space. The lattice constant of metamaterial is much smaller than the wavelength of the incident EM wave, so the metamaterial can be treated as an artificial effective medium for the propagating of the EM waves. By controlling the geometrical parameters of its lattice, the metamaterials can be developed with properties never found in nature, which can be utilized to manipulate the propagation of EM waves, such as blocking, absorbing, capturing, or bending waves. With these magic properties, 3D metamaterials get bright prospects for applications in stealth technology, communication technology, optical imaging and sensing technology.

    The principles for metamaterials are firstly discussed. There are two kinds of metamaterials with difference in the electromagnetic responses. They are metallic resonant metamaterials and dielectric non-resonant metamaterials. Metallic resonant metamaterials are normally constructed by split-ring resonator, metal continuous line, metal break line and so on, to get negative effective permeability and negative permittivity by magnetic and electric resonance. Non-resonant dielectric metamaterials obtain their arbitrary permeability and permittivity by specific distribution of the dielectric materials.

    The recent developments of the structure design and manufacturing process in 3D metamaterials are sorted out, which include printing circuit board and assembly technology, machining and assembly technology, micro-nano manufacturing technology and 3D printing technology. Printing circuit board and assembly technology are suitable for metallic resonant metamaterials. Machining and assembly technology are fit for dielectric non-resonant microwave metamaterials. Micro/nano-manufacturing technology can be used to fabricate simple and small scale optical metamaterials. 3D printing technology can be used in fabricating metamaterials from gigahertz to terahertz, and its process capability in fabricating complex micro and macro-structure is very useful for metamaterials.

    The representative devices of 3D metamaterials are also discussed to show how the 3D metamaterials control the electromagnetic-wave, including electromagnetic cloaks, lens antennas, absorbing structure and flexible metamaterials. According to the problems in manufacturing process and structure innovation, several developments trends have been predicted, such as trans-scale manufacturing technology for complex micro/macro-structure, multi/material manufacturing technology, manufacturing technology for multi-function coupling structures, smart metamaterials design and fabricating with 4D printing technology etc.

  • 加载中
  • 图 1  多种超材料单元结构[14].

    图 2  基于印刷电路板工艺的超材料三维结构[18]. (a)整体结构. (b)单元结构.

    图 3  机械加工制造的陶瓷全介质超材料. (a)切削加工成型的陶瓷超材料单元[24-25]. (b)嵌入基底的全介质超材料阵列结构[25].

    图 4  采用电子束刻蚀工艺制造的超材料[27].

    图 5  激光直写工艺制造的超材料[31].

    图 6  光固化工艺制造的三维超材料结构[35]. (a)电磁黑洞内核. (b)电磁黑洞外壳.

    图 7  微波段三维地毯式隐身罩[19].

    图 8  微波段三维伊顿透镜[46].

    图 9  平板型和圆环型三维超材料雷达吸波结构蒙皮.

    图 10  变形超材料波导[54]. (a)单元结构示意图. (b)弯曲后波导结构.

  • [1]

    Cui Tiejun, Smith D R, Liu Ruopeng. Metamaterials: theory, design and applications[M]. New York: Springer, 2010.

    [2]

    崔万照, 马伟, 邱乐德, 等.电磁超介质及其应用[M].北京:国防工业出版社, 2008.

    Cui Wanzhao, Ma Wei, Qiu Lede, et al. Electromagnetic metamaterials and its applications[M]. Beijing: National Defense Industry Press, 2008.

    [3]

    张明习.超材料概论[M].北京:国防工业出版社, 2014.

    Zhang Mingxi. Introduction to metamaterials[M]. Beijing: National Defense Industry Press, 2014.

    [4]

    Tang Wenxuan, Mei Zhonglei, Cui Tiejun. Theory, experiment and applications of metamaterials[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 127001. https://link.springer.com/article/10.1007/s11433-015-5746-8

    [5]

    Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials[J]. Microelectronic Engineering, 2016, 163: 7-20. doi: 10.1016/j.mee.2016.05.005

    [6]

    Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699

    [7]

    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847

    [8]

    Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609. doi: 10.1103/PhysRevE.71.036609

    [9]

    Kafesaki M, Tsiapa I, Katsarakis N, et al. Left-handed metamaterials: the fishnet structure and its variations[J]. Physical Review B, 2007, 75(23): 235114. doi: 10.1103/PhysRevB.75.235114

    [10]

    Zhou Jiangfeng, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622. doi: 10.1364/OL.31.003620

    [11]

    Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973. doi: 10.1109/TAP.2016.2526052

    [12]

    Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609. doi: 10.1103/PhysRevE.71.036609

    [13]

    Ma Huifeng, Cai Bengeng, Zhang Tengxiang, et al. Three- dimensional gradient-index materials and their applications in microwave lens antennas[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2561-2569. doi: 10.1109/TAP.2012.2237534

    [14]

    Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530. doi: 10.1038/nphoton.2011.154

    [15]

    Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77- 79. doi: 10.1126/science.1058847

    [16]

    Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    [17]

    Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292

    [18]

    Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    [19]

    Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground- plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21. https://media.nature.com/original/nature-assets/ncomms/journal/v1/n3/extref/ncomms1023-s1.pdf

    [20]

    Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1: 124. doi: 10.1038/ncomms1126

    [21]

    Mei Zhonglei, Bai Jing, Cui Tiejun. Gradient index metamaterials realized by drilling hole arrays[J]. Journal of Physics D: Applied Physics, 2010, 43(5): 055404. doi: 10.1088/0022-3727/43/5/055404

    [22]

    Driscoll T, Lipworth G, Hunt J, et al. Performance of a three dimensional transformation-optical-flattened Lüneburg lens[J]. Optics Express, 2012, 20(12): 13262-13273. doi: 10.1364/OE.20.013262

    [23]

    Xu Xiaofei, Feng Yijun, Xiong Shuai, et al. Broad band invisibility cloak made of normal dielectric multilayer[J]. Applied Physics Letters, 2011, 99(15): 154104. doi: 10.1063/1.3648116

    [24]

    Peng Liang, Ran Lixin, Chen Hongsheng, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Applied Physics Letters, 2007, 98(15): 157403. doi: 10.1103/PhysRevLett.98.157403

    [25]

    Zhao Qian, Kang Lei, Du B, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Applied Physics Letters, 2008, 101(2): 027402. doi: 10.1103/PhysRevLett.101.027402

    [26]

    Lee J H, Blair J, Tamma V A, et al. Direct visualization of optical frequency invisibility cloak based on silicon nanorod array[J]. Optics Express, 2009, 17(15): 12922-12928. doi: 10.1364/OE.17.012922

    [27]

    Blair J, Brown D, Tamma V A, et al. Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): 1222-1230. http://ecee.colorado.edu/~wpark/papers/J. Vac. Sci. Technol. B 2010 Blair.pdf

    [28]

    Zhang Shuang, Zhou Jiangfeng, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3: 942. doi: 10.1038/ncomms1908

    [29]

    Zhu Weiming, Liu Aiqun, Zhang Xuming, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 2011, 23(15): 1792-1796. doi: 10.1002/adma.201004341

    [30]

    Tian Xiaoyong, Yin Ming, Li Dichen. 3D printing: a useful tool for the fabrication of artificial electromagnetic (EM) medium[J]. Rapid Prototyping Journal, 2016, 22(2): 251-257. http://www.emeraldinsight.com/doi/pdfplus/10.1108/RPJ-09-2014-0122

    [31]

    Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351

    [32]

    Zhou Fan, Bao Yongjun, Cao Wei, et al. Hiding a realistic object using a broadband terahertz invisibility cloak[J]. Scientific Reports, 2011, 1: 78. doi: 10.1038/srep00078

    [33]

    Yin Ming, Tian Xiaoyong, Han Haoxue, et al. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime[J]. Applied Physics Letters, 2012, 100(12): 124101. doi: 10.1063/1.3696040

    [34]

    李涤尘, 贺健康, 田小永, 等.增材制造:实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6): 129-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201306018

    Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manufacturing: integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201306018

    [35]

    Yin Ming, Tian Xiaoyong, Wu Lingling, et al. A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure[J]. Optics Express, 2013, 21(16): 19082. doi: 10.1364/OE.21.019082

    [36]

    Ye Dexin, Lu Ling, Joannopoulos J D, et al. Invisible metallic mesh[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): 2568-2572. doi: 10.1073/pnas.1600521113

    [37]

    Urzhumov Y, Landy N, Driscoll T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Optics Letters, 2013, 38(10): 1606-1608. doi: 10.1364/OL.38.001606

    [38]

    Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    [39]

    Cai Wenshan, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227. doi: 10.1038/nphoton.2007.28

    [40]

    Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901

    [41]

    Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    [42]

    Leonhardt U. Notes on conformal invisibility devices[J]. New Journal of Physics, 2006, 8(7): 118. doi: 10.1088/1367-2630/8/7/118

    [43]

    Luneburg R K. Mathematical theory of optics[M]. Berkeley, California: University of California Press, 1964.

    [44]

    Danner A J, Tyc T, Leonhardt U. Controlling birefringence in dielectrics[J]. Nature Photonics, 2011, 5(6): 357-359. doi: 10.1038/nphoton.2011.53

    [45]

    Ma Yungui, Ong C K, Tyc T, et al. An omnidirectional retroreflector based on the transmutation of dielectric singularities[J]. Nature Materials, 2009, 8(8): 639-642. doi: 10.1038/nmat2489

    [46]

    Yin Ming, Tian Xiaoyong, Wu Lingling, et al. All-dielectric three-dimensional broadband Eaton lens with large refractive index range[J]. Applied Physics Letters, 2014, 104(9): 094101. doi: 10.1063/1.4867704

    [47]

    Wu Lingling, Tian Xiaoyong, Yin Ming, et al. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band[J]. Applied Physics Letters, 2013, 103(8): 084102. doi: 10.1063/1.4819338

    [48]

    Wang Bingnan, Koschny T, Soukoulis C M. Wide-angle and polarization-independent chiral metamaterial absorber[J]. Physical Review B, 2009, 80(3): 033108. doi: 10.1103/PhysRevB.80.033108

    [49]

    Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506. doi: 10.1063/1.3692178

    [50]

    Hawkes A M, Katko A R, Cummer S A. A microwave metamaterial with integrated power harvesting functionality[J]. Applied Physics Letters, 2013, 103(16): 163901. doi: 10.1063/1.4824473

    [51]

    Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. doi: 10.1088/1367-2630/12/6/063006

    [52]

    Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594

    [53]

    Shin D, Urzhumov Y, Jung Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 2012, 3: 1213. doi: 10.1038/ncomms2219

    [54]

    Shin D, Urzhumov Y, Lim D, et al. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials[J]. Scientific Reports, 2014, 4: 4084. https://www.researchgate.net/publication/260169361_A_versatile_smart_transformation_optics_device_with_auxetic_elasto-electromagnetic_metamaterials

    [55]

    Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communication, 2015, 6: 8422. doi: 10.1038/ncomms9422

    [56]

    Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411

    [57]

    Yoo Y J, Ju S, Park S Y, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 2015, 5: 14018. doi: 10.1038/srep14018

  • 加载中

(10)

计量
  • 文章访问数:  13272
  • PDF下载数:  5416
  • 施引文献:  0
出版历程
收稿日期:  2016-10-13
修回日期:  2016-12-30
刊出日期:  2017-01-20

目录

/

返回文章
返回