Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006
Citation: Xiaoyong Tian, Lixian Yin, Dichen Li. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. doi: 10.3969/j.issn.1003-501X.2017.01.006

Current situation and trend of fabrication technologies for three-dimensional metamaterials

    Fund Project:
More Information
  • Three dimensional (3D) metamaterials are periodic artificial microstructures arranged in three-dimensional space. They are in scale of subwavelength, thus getting extraordinary physical properties which are not found in nature. The recent developments on basic theory and manufacturing process of the 3D metamaterials are discussed in this letter. Manufacturing processes of the 3D metamaterials are sorted out, including printing circuit board and assembly, machining technology, 3D printing technology, micro/nano-manufacturing technology. As the representative devices of 3D metamaterials, the electromagnetic cloaks, lens antennas, absorbers and flexible metamaterials are discussed to show how the 3D metamaterials control the electromagnetic-wave. Devices of left-handed metamaterials, graded refractive index metamaterials, intelligent metamaterials are also discussed. Finally, the development trends of 3D metamaterials in future are discussed and predicted according to the present problems of 3D metamaterials.
  • 加载中
  • [1] Cui Tiejun, Smith D R, Liu Ruopeng. Metamaterials: theory, design and applications[M]. New York: Springer, 2010.

    Google Scholar

    [2] 崔万照, 马伟, 邱乐德, 等.电磁超介质及其应用[M].北京:国防工业出版社, 2008.

    Google Scholar

    Cui Wanzhao, Ma Wei, Qiu Lede, et al. Electromagnetic metamaterials and its applications[M]. Beijing: National Defense Industry Press, 2008.

    Google Scholar

    [3] 张明习.超材料概论[M].北京:国防工业出版社, 2014.

    Google Scholar

    Zhang Mingxi. Introduction to metamaterials[M]. Beijing: National Defense Industry Press, 2014.

    Google Scholar

    [4] Tang Wenxuan, Mei Zhonglei, Cui Tiejun. Theory, experiment and applications of metamaterials[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(12): 127001.

    Google Scholar

    [5] Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials[J]. Microelectronic Engineering, 2016, 163: 7-20. doi: 10.1016/j.mee.2016.05.005

    CrossRef Google Scholar

    [6] Veselago V G. The electrodynamics of substances with simultaneously negative values of ɛ and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699

    CrossRef Google Scholar

    [7] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [8] Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609. doi: 10.1103/PhysRevE.71.036609

    CrossRef Google Scholar

    [9] Kafesaki M, Tsiapa I, Katsarakis N, et al. Left-handed metamaterials: the fishnet structure and its variations[J]. Physical Review B, 2007, 75(23): 235114. doi: 10.1103/PhysRevB.75.235114

    CrossRef Google Scholar

    [10] Zhou Jiangfeng, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622. doi: 10.1364/OL.31.003620

    CrossRef Google Scholar

    [11] Erfani E, Niroo-Jazi M, Tatu S. A high-gain broadband gradient refractive index metasurface lens antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1968-1973. doi: 10.1109/TAP.2016.2526052

    CrossRef Google Scholar

    [12] Smith D R, Mock J J, Starr A F, et al. Gradient index metamaterials[J]. Physical Review E, 2005, 71(3): 036609. doi: 10.1103/PhysRevE.71.036609

    CrossRef Google Scholar

    [13] Ma Huifeng, Cai Bengeng, Zhang Tengxiang, et al. Three- dimensional gradient-index materials and their applications in microwave lens antennas[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2561-2569. doi: 10.1109/TAP.2012.2237534

    CrossRef Google Scholar

    [14] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 2011, 5(9): 523-530. doi: 10.1038/nphoton.2011.154

    CrossRef Google Scholar

    [15] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77- 79. doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [16] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [17] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [18] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [19] Ma Huifeng, Cui Tiejun. Three-dimensional broadband ground- plane cloak made of metamaterials[J]. Nature Communications, 2010, 1: 21.

    Google Scholar

    [20] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1: 124. doi: 10.1038/ncomms1126

    CrossRef Google Scholar

    [21] Mei Zhonglei, Bai Jing, Cui Tiejun. Gradient index metamaterials realized by drilling hole arrays[J]. Journal of Physics D: Applied Physics, 2010, 43(5): 055404. doi: 10.1088/0022-3727/43/5/055404

    CrossRef Google Scholar

    [22] Driscoll T, Lipworth G, Hunt J, et al. Performance of a three dimensional transformation-optical-flattened Lüneburg lens[J]. Optics Express, 2012, 20(12): 13262-13273. doi: 10.1364/OE.20.013262

    CrossRef Google Scholar

    [23] Xu Xiaofei, Feng Yijun, Xiong Shuai, et al. Broad band invisibility cloak made of normal dielectric multilayer[J]. Applied Physics Letters, 2011, 99(15): 154104. doi: 10.1063/1.3648116

    CrossRef Google Scholar

    [24] Peng Liang, Ran Lixin, Chen Hongsheng, et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators[J]. Applied Physics Letters, 2007, 98(15): 157403. doi: 10.1103/PhysRevLett.98.157403

    CrossRef Google Scholar

    [25] Zhao Qian, Kang Lei, Du B, et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite[J]. Applied Physics Letters, 2008, 101(2): 027402. doi: 10.1103/PhysRevLett.101.027402

    CrossRef Google Scholar

    [26] Lee J H, Blair J, Tamma V A, et al. Direct visualization of optical frequency invisibility cloak based on silicon nanorod array[J]. Optics Express, 2009, 17(15): 12922-12928. doi: 10.1364/OE.17.012922

    CrossRef Google Scholar

    [27] Blair J, Brown D, Tamma V A, et al. Challenges in the fabrication of an optical frequency ground plane cloak consisting of silicon nanorod arrays[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): 1222-1230.

    Google Scholar

    [28] Zhang Shuang, Zhou Jiangfeng, Park Y S, et al. Photoinduced handedness switching in terahertz chiral metamolecules[J]. Nature Communications, 2012, 3: 942. doi: 10.1038/ncomms1908

    CrossRef Google Scholar

    [29] Zhu Weiming, Liu Aiqun, Zhang Xuming, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 2011, 23(15): 1792-1796. doi: 10.1002/adma.201004341

    CrossRef Google Scholar

    [30] Tian Xiaoyong, Yin Ming, Li Dichen. 3D printing: a useful tool for the fabrication of artificial electromagnetic (EM) medium[J]. Rapid Prototyping Journal, 2016, 22(2): 251-257.

    Google Scholar

    [31] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351

    CrossRef Google Scholar

    [32] Zhou Fan, Bao Yongjun, Cao Wei, et al. Hiding a realistic object using a broadband terahertz invisibility cloak[J]. Scientific Reports, 2011, 1: 78. doi: 10.1038/srep00078

    CrossRef Google Scholar

    [33] Yin Ming, Tian Xiaoyong, Han Haoxue, et al. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime[J]. Applied Physics Letters, 2012, 100(12): 124101. doi: 10.1063/1.3696040

    CrossRef Google Scholar

    [34] 李涤尘, 贺健康, 田小永, 等.增材制造:实现宏微结构一体化制造[J].机械工程学报, 2013, 49(6): 129-135.

    Google Scholar

    Li Dichen, He Jiankang, Tian Xiaoyong, et al. Additive manufacturing: integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6): 129-135.

    Google Scholar

    [35] Yin Ming, Tian Xiaoyong, Wu Lingling, et al. A broadband and omnidirectional electromagnetic wave concentrator with gradient woodpile structure[J]. Optics Express, 2013, 21(16): 19082. doi: 10.1364/OE.21.019082

    CrossRef Google Scholar

    [36] Ye Dexin, Lu Ling, Joannopoulos J D, et al. Invisible metallic mesh[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(10): 2568-2572. doi: 10.1073/pnas.1600521113

    CrossRef Google Scholar

    [37] Urzhumov Y, Landy N, Driscoll T, et al. Thin low-loss dielectric coatings for free-space cloaking[J]. Optics Letters, 2013, 38(10): 1606-1608. doi: 10.1364/OL.38.001606

    CrossRef Google Scholar

    [38] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [39] Cai Wenshan, Chettiar U K, Kildishev A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224-227. doi: 10.1038/nphoton.2007.28

    CrossRef Google Scholar

    [40] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901

    CrossRef Google Scholar

    [41] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [42] Leonhardt U. Notes on conformal invisibility devices[J]. New Journal of Physics, 2006, 8(7): 118. doi: 10.1088/1367-2630/8/7/118

    CrossRef Google Scholar

    [43] Luneburg R K. Mathematical theory of optics[M]. Berkeley, California: University of California Press, 1964.

    Google Scholar

    [44] Danner A J, Tyc T, Leonhardt U. Controlling birefringence in dielectrics[J]. Nature Photonics, 2011, 5(6): 357-359. doi: 10.1038/nphoton.2011.53

    CrossRef Google Scholar

    [45] Ma Yungui, Ong C K, Tyc T, et al. An omnidirectional retroreflector based on the transmutation of dielectric singularities[J]. Nature Materials, 2009, 8(8): 639-642. doi: 10.1038/nmat2489

    CrossRef Google Scholar

    [46] Yin Ming, Tian Xiaoyong, Wu Lingling, et al. All-dielectric three-dimensional broadband Eaton lens with large refractive index range[J]. Applied Physics Letters, 2014, 104(9): 094101. doi: 10.1063/1.4867704

    CrossRef Google Scholar

    [47] Wu Lingling, Tian Xiaoyong, Yin Ming, et al. Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band[J]. Applied Physics Letters, 2013, 103(8): 084102. doi: 10.1063/1.4819338

    CrossRef Google Scholar

    [48] Wang Bingnan, Koschny T, Soukoulis C M. Wide-angle and polarization-independent chiral metamaterial absorber[J]. Physical Review B, 2009, 80(3): 033108. doi: 10.1103/PhysRevB.80.033108

    CrossRef Google Scholar

    [49] Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 103506. doi: 10.1063/1.3692178

    CrossRef Google Scholar

    [50] Hawkes A M, Katko A R, Cummer S A. A microwave metamaterial with integrated power harvesting functionality[J]. Applied Physics Letters, 2013, 103(16): 163901. doi: 10.1063/1.4824473

    CrossRef Google Scholar

    [51] Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. doi: 10.1088/1367-2630/12/6/063006

    CrossRef Google Scholar

    [52] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594

    CrossRef Google Scholar

    [53] Shin D, Urzhumov Y, Jung Y, et al. Broadband electromagnetic cloaking with smart metamaterials[J]. Nature Communications, 2012, 3: 1213. doi: 10.1038/ncomms2219

    CrossRef Google Scholar

    [54] Shin D, Urzhumov Y, Lim D, et al. A versatile smart transformation optics device with auxetic elasto-electromagnetic metamaterials[J]. Scientific Reports, 2014, 4: 4084.

    Google Scholar

    [55] Kan T, Isozaki A, Kanda N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communication, 2015, 6: 8422. doi: 10.1038/ncomms9422

    CrossRef Google Scholar

    [56] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [57] Yoo Y J, Ju S, Park S Y, et al. Metamaterial absorber for electromagnetic waves in periodic water droplets[J]. Scientific Reports, 2015, 5: 14018. doi: 10.1038/srep14018

    CrossRef Google Scholar

  • Abstract: Three dimensional (3D) metamaterials are artificial micro-structures periodically arranged in three-dimensional space. The lattice constant of metamaterial is much smaller than the wavelength of the incident EM wave, so the metamaterial can be treated as an artificial effective medium for the propagating of the EM waves. By controlling the geometrical parameters of its lattice, the metamaterials can be developed with properties never found in nature, which can be utilized to manipulate the propagation of EM waves, such as blocking, absorbing, capturing, or bending waves. With these magic properties, 3D metamaterials get bright prospects for applications in stealth technology, communication technology, optical imaging and sensing technology.

    The principles for metamaterials are firstly discussed. There are two kinds of metamaterials with difference in the electromagnetic responses. They are metallic resonant metamaterials and dielectric non-resonant metamaterials. Metallic resonant metamaterials are normally constructed by split-ring resonator, metal continuous line, metal break line and so on, to get negative effective permeability and negative permittivity by magnetic and electric resonance. Non-resonant dielectric metamaterials obtain their arbitrary permeability and permittivity by specific distribution of the dielectric materials.

    The recent developments of the structure design and manufacturing process in 3D metamaterials are sorted out, which include printing circuit board and assembly technology, machining and assembly technology, micro-nano manufacturing technology and 3D printing technology. Printing circuit board and assembly technology are suitable for metallic resonant metamaterials. Machining and assembly technology are fit for dielectric non-resonant microwave metamaterials. Micro/nano-manufacturing technology can be used to fabricate simple and small scale optical metamaterials. 3D printing technology can be used in fabricating metamaterials from gigahertz to terahertz, and its process capability in fabricating complex micro and macro-structure is very useful for metamaterials.

    The representative devices of 3D metamaterials are also discussed to show how the 3D metamaterials control the electromagnetic-wave, including electromagnetic cloaks, lens antennas, absorbing structure and flexible metamaterials. According to the problems in manufacturing process and structure innovation, several developments trends have been predicted, such as trans-scale manufacturing technology for complex micro/macro-structure, multi/material manufacturing technology, manufacturing technology for multi-function coupling structures, smart metamaterials design and fabricating with 4D printing technology etc.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(13281) PDF downloads(5416) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint