Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042
Citation: Jia Y C, Wang S X, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrica-tion and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

Review Open Access

Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application

More Information
  • Optical waveguides are far more than mere connecting elements in integrated optical systems and circuits. Benefiting from their high optical confinement and miniaturized footprints, waveguide structures established based on crystalline materials, particularly, are opening exciting possibilities and opportunities in photonic chips by facilitating their on-chip integration with different functionalities and highly compact photonic circuits. Femtosecond-laser-direct writing (FsLDW), as a true three-dimensional (3D) micromachining and microfabrication technology, allows rapid prototyping of on-demand waveguide geometries inside transparent materials via localized material modification. The success of FsLDW lies not only in its unsurpassed aptitude for realizing 3D devices but also in its remarkable material-independence that enables cross-platform solutions. This review emphasizes FsLDW fabrication of waveguide structures with 3D layouts in dielectric crystals. Their functionalities as passive and active photonic devices are also demonstrated and discussed.
  • 加载中
  • [1] Lifante G. Integrated Photonics: Fundamentals (John Wiley & Sons, Hoboken, 2003).

    Google Scholar

    [2] Saleh B E A, Teich M C. Fundamentals of Photonics 3rd ed (John Wiley & Sons, Hoboken, 2019).

    Google Scholar

    [3] Grivas C. Optically pumped planar waveguide lasers, Part Ⅰ: Fundamentals and fabrication techniques. Prog Quant Electron 35, 159-239 (2011). doi: 10.1016/j.pquantelec.2011.05.002

    CrossRef Google Scholar

    [4] Grivas C. Optically pumped planar waveguide lasers: Part Ⅱ: Gain media, laser systems, and applications. Prog Quant Electron 45-46, 3-160 (2016). doi: 10.1016/j.pquantelec.2015.12.001

    CrossRef Google Scholar

    [5] Jia Y C, Chen F. Compact solid-state waveguide lasers operating in the pulsed regime: a review[Invited]. Chin Opt Lett 17, 012302 (2019). doi: 10.3788/COL201917.012302

    CrossRef Google Scholar

    [6] Nikogosyan D N. Nonlinear Optical Crystals: A Complete Survey (Springer, New York, 2005).

    Google Scholar

    [7] Mackenzie J I. Dielectric solid-state planar waveguide lasers: a review. IEEE J Sel Top Quantum Electron 13, 626-637 (2007). doi: 10.1109/JSTQE.2007.897184

    CrossRef Google Scholar

    [8] Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser Photonics Rev 6, 622-640 (2012). doi: 10.1002/lpor.201100037

    CrossRef Google Scholar

    [9] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). doi: 10.1364/OPTICA.4.001536

    CrossRef Google Scholar

    [10] Wolf R, Jia Y C, Bonaus S, Werner C S, Herr S J et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries. Optica 5, 872-875 (2018). doi: 10.1364/OPTICA.5.000872

    CrossRef Google Scholar

    [11] Osellame R, Cerullo G, Ramponi R. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer, Berlin Heidelberg, 2012).

    Google Scholar

    [12] Chen F, Vázquez de Aldana J R. Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining. Laser Photonics Rev 8, 251-275 (2014). doi: 10.1002/lpor.201300025

    CrossRef Google Scholar

    [13] Sugioka K, Cheng Y. Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications (Springer, London, 2014).

    Google Scholar

    [14] Choudhury D, Macdonald J R, Kar A K. Ultrafast laser inscription: perspectives on future integrated applications. Laser Photonics Rev 8, 827-846 (2014). doi: 10.1002/lpor.201300195

    CrossRef Google Scholar

    [15] Gross S, Withford M J. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332-352 (2015). doi: 10.1515/nanoph-2015-0020

    CrossRef Google Scholar

    [16] Davis K M, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 21, 1729-1731 (1996). doi: 10.1364/OL.21.001729

    CrossRef Google Scholar

    [17] Gross S, Dubov M, Withford M J. On the use of the Type Ⅰ and Ⅱ scheme for classifying ultrafast laser direct-write photonics. Opt Express 23, 7767-7770 (2015). doi: 10.1364/OE.23.007767

    CrossRef Google Scholar

    [18] Ams M, Dekker P, Gross S, Withford M J. Fabricating waveguide Bragg gratings (WBGs) in bulk materials using ultrashort laser pulses. Nanophotonics 6, 743-763 (2017). doi: 10.1515/nanoph-2016-0119

    CrossRef Google Scholar

    [19] Burghoff J, Nolte S, Tünnermann A. Origins of waveguiding in femtosecond laser-structured LiNbO3. Appl Phys A 89, 127-132 (2007). doi: 10.1007/s00339-007-4152-0

    CrossRef Google Scholar

    [20] Thomas J, Heinrich M, Zeil P, Hilbert V, Rademaker K et al. Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform. Phys Status Solidi A 208, 276-283 (2011). doi: 10.1002/pssa.201026452

    CrossRef Google Scholar

    [21] Macdonald J R, Thomson R R, Beecher S J, Psaila N D, Bookey H T et al. Ultrafast laser inscription of near-infrared waveguides in polycrystalline ZnSe. Opt Lett 35, 4036-4038 (2010). doi: 10.1364/OL.35.004036

    CrossRef Google Scholar

    [22] Rodenas A, Kar A K. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express 19, 17820-17833 (2011). doi: 10.1364/OE.19.017820

    CrossRef Google Scholar

    [23] He R Y, Hernández-Palmero I, Romero C, Vázquez de Aldana J R, Chen F. Three-dimensional dielectric crystalline waveguide beam splitters in mid-infrared band by direct femtosecond laser writing. Opt Express 22, 31293-31298 (2014). doi: 10.1364/OE.22.031293

    CrossRef Google Scholar

    [24] Ródenas A, Torchia G A, Lifante G, Cantelar E, Lamela J et al. Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations. Appl Phys B 95, 85-96 (2009). doi: 10.1007/s00340-008-3353-3

    CrossRef Google Scholar

    [25] Ródenas A, Maestro L M, Ramírez M O, Torchia G A, Roso L et al. Anisotropic lattice changes in femtosecond laser inscribed Nd3+:MgO:LiNbO3 optical waveguides. J Appl Phys 106, 013110 (2009). doi: 10.1063/1.3168432

    CrossRef Google Scholar

    [26] Nguyen H D, Ródenas A, Vázquez de Aldana J R, Martínez J, Chen F et al. Heuristic modelling of laser written mid-infrared LiNbO3 stressed-cladding waveguides. Opt Express 24, 7777-7791 (2016). doi: 10.1364/OE.24.007777

    CrossRef Google Scholar

    [27] Okhrimchuk A G, Shestakov A V, Khrushchev I, Mitchell J. Depressed cladding, buried waveguide laser formed in a YAG: Nd3+ crystal by femtosecond laser writing. Opt Lett 30, 2248-2250 (2005). doi: 10.1364/OL.30.002248

    CrossRef Google Scholar

    [28] Liu H L, Jia Y C, Vázquez de Aldana J R, Jaque D, Chen F. Femtosecond laser inscribed cladding waveguides in Nd:YAG ceramics: Fabrication, fluorescence imaging and laser performance. Opt Express 20, 18620-18629 (2012). doi: 10.1364/OE.20.018620

    CrossRef Google Scholar

    [29] Jia Y C, Chen F, Vázquez de Aldana J R. Efficient continuous-wave laser operation at 1064 nm in Nd: YVO4 cladding waveguides produced by femtosecond laser inscription. Opt Express 20, 16801-16806 (2012). doi: 10.1364/OE.20.016801

    CrossRef Google Scholar

    [30] Jia Y C, He R Y, Vázquez de Aldana J R, Liu H L, Chen F. Femtosecond laser direct writing of few-mode depressed-cladding waveguide lasers. Opt Express 27, 30941-30951 (2019). doi: 10.1364/OE.27.030941

    CrossRef Google Scholar

    [31] Chen F, Vázquez de Aldana J R. Laser-written 3D crystalline photonic devices. SPIE Newsroom (2015).

    Google Scholar

    [32] Gui L, Xu B X, Chong T C. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonics Technol Lett 16, 1337-1339 (2004). doi: 10.1109/LPT.2004.826112

    CrossRef Google Scholar

    [33] Lv J M, Cheng Y C, Yuan W H, Hao X T, Chen F. Three-dimensional femtosecond laser fabrication of waveguide beam splitters in LiNbO3 crystal. Opt Mater Express 5, 1274-1280 (2015). doi: 10.1364/OME.5.001274

    CrossRef Google Scholar

    [34] Li L Q, Nie W J, Li Z Q, Romero C, Rodriguez-Beltrán R I et al. Laser-writing of ring-shaped waveguides in BGO crystal for telecommunication band. Opt Express 25, 24236-24241 (2017). doi: 10.1364/OE.25.024236

    CrossRef Google Scholar

    [35] Osellame R, Lobino M, Chiodo N, Marangoni M, Cerullo G et al. Femtosecond laser writing of waveguides in periodically poled lithium niobate preserving the nonlinear coefficient. Appl Phys Lett 90, 241107 (2007). doi: 10.1063/1.2748328

    CrossRef Google Scholar

    [36] Zhang B, Xiong B C, Li Z Q, Li L Q, Lv J M et al. Mode tailoring of laser written waveguides in LiNbO3 crystals by multi-scan of femtosecond laser pulses. Opt Mater 86, 571-575 (2018). doi: 10.1016/j.optmat.2018.11.001

    CrossRef Google Scholar

    [37] Burghoff J, Grebing C, Nolte S, Tünnermann A. Waveguides in lithium niobate fabricated by focused ultrashort laser pulses. Appl Surf Sci 253, 7899-7902 (2007). doi: 10.1016/j.apsusc.2007.02.148

    CrossRef Google Scholar

    [38] Calmano T, Paschke A G, Müller S, Kränkel C, Huber G. Curved Yb:YAG waveguide lasers, fabricated by femtosecond laser inscription. Opt Express 21, 25501-25508 (2013). doi: 10.1364/OE.21.025501

    CrossRef Google Scholar

    [39] Calmano T, Kränkel C, Huber G. Laser oscillation in Yb:YAG waveguide beam-splitters with variable splitting ratio. Opt Lett 40, 1753-1756 (2015). doi: 10.1364/OL.40.001753

    CrossRef Google Scholar

    [40] Courvoisier A, Booth M J, Salter P S. Inscription of 3D waveguides in diamond using an ultrafast laser. Appl Phys Lett 109, 031109 (2016). doi: 10.1063/1.4959267

    CrossRef Google Scholar

    [41] Presti D A, Guarepi V, Videla F, Torchia G A. Design and implementation of an integrated optical coupler by femtosecond laser written-waveguides in LiNbO3. Opt Laser Eng 126, 105860 (2020). doi: 10.1016/j.optlaseng.2019.105860

    CrossRef Google Scholar

    [42] Heinrich M, Szameit A, Dreisow F, Döring S, Thomas J et al. Evanescent coupling in arrays of type Ⅱ femtosecond laser-written waveguides in bulk x-cut lithium niobate. Appl Phys Lett 93, 101111 (2008). doi: 10.1063/1.2981801

    CrossRef Google Scholar

    [43] Liu H L, Yao Y C, Wu P F, Jia Y C. Femtosecond laser direct writing of evanescently-coupled planar waveguide laser arrays. Opt Mater Express 9, 4447-4455 (2019). doi: 10.1364/OME.9.004447

    CrossRef Google Scholar

    [44] Ajates J G, Romero C, Castillo G R, Chen F, Vázquez de Aldana J R. Y-junctions based on circular depressed-cladding waveguides fabricated with femtosecond pulses in Nd:YAG crystal: A route to integrate complex photonic circuits in crystals. Opt Mater 72, 220-225 (2017). doi: 10.1016/j.optmat.2017.06.014

    CrossRef Google Scholar

    [45] Castillo G R, Labrador-Páez L, Chen F, Camacho-López S, Vázquez de Aldana J R. Depressed-cladding 3-D waveguide arrays fabricated with femtosecond laser pulses. J Lightwave Technol 35, 2520-2525 (2017). doi: 10.1109/JLT.2017.2696163

    CrossRef Google Scholar

    [46] Ajates J G, Vázquez de Aldana J R, Chen F, Ródenas A. Three-dimensional beam-splitting transitions and numerical modelling of direct-laser-written near-infrared LiNbO3 cladding waveguides. Opt Mater Express 8, 1890-1901 (2018). doi: 10.1364/OME.8.001890

    CrossRef Google Scholar

    [47] Li S L, Ye Y K, Shen C Y, Wang H L. Femtosecond laser inscribed cladding waveguide structures in LiNbO3 crystal for beam splitters. Opt Eng 57, 117103 (2018).

    Google Scholar

    [48] Ren Y Y, Zhang L M, Xing H G, Romero C, Vázquez de Aldana J R et al. Cladding waveguide splitters fabricated by femtosecond laser inscription in Ti:Sapphire crystal. Opt Laser Technol 103, 82-88 (2018). doi: 10.1016/j.optlastec.2018.01.021

    CrossRef Google Scholar

    [49] Jia Y C, Cheng C, Vázquez de Aldana J R, Castillo G R, del Rosal Rabes B et al. Monolithic crystalline cladding microstructures for efficient light guiding and beam manipulation in passive and active regimes. Sci Rep 4, 5988 (2014).

    Google Scholar

    [50] Jia Y C, Cheng C, Vázquez de Aldana J R, Chen F. Three-dimensional waveguide splitters inscribed in Nd:YAG by femtosecond laser writing: realization and laser emission. J Lightwave Technol 34, 1328-1332 (2016). doi: 10.1109/JLT.2015.2503349

    CrossRef Google Scholar

    [51] Lv J M, Cheng Y Z, Vázquez de Aldana J R, Hao X T, Chen F. Femtosecond laser writing of optical-lattice-like cladding structures for three-dimensional waveguide beam splitters in LiNbO3 crystal. J Lightwave Technol 34, 3587-3591 (2016). doi: 10.1109/JLT.2016.2573841

    CrossRef Google Scholar

    [52] Nie W J, He R Y, Cheng C, Rocha U, Vázquez de Aldana J R et al. Optical lattice-like cladding waveguides by direct laser writing: fabrication, luminescence, and lasing. Opt Lett 41, 2169-2172 (2016).

    Google Scholar

    [53] Kifle E, Mateos X, Vázquez de Aldana J R, Ródenas A, Loiko P et al. Femtosecond-laser-written Tm:KLu(WO4)2 waveguide lasers. Opt Lett 42, 1169-1172 (2017). doi: 10.1364/OL.42.001169

    CrossRef Google Scholar

    [54] Ren Y Y, Zhang L M, Lv J M, Zhao Y F, Romero C et al. Optical-lattice-like waveguide structures in Ti:Sapphire by femtosecond laser inscription for beam splitting. Opt Mater Express 7, 1942-1949 (2017). doi: 10.1364/OME.7.001942

    CrossRef Google Scholar

    [55] Nie W J, Romero C, Lu Q M, Vázquez de Aldana J R, Chen F. Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal. Opt Mater 84, 531-535 (2018). doi: 10.1016/j.optmat.2018.07.057

    CrossRef Google Scholar

    [56] Morales-Vidal M, Sola Í J, Castillo G R, Vázquez de Aldana J R, Alonso B. Ultrashort pulse propagation through depressed-cladding channel waveguides in YAG crystal: Spatio-temporal characterization. Opt Laser Technol 123, 105898 (2020). doi: 10.1016/j.optlastec.2019.105898

    CrossRef Google Scholar

    [57] Zhang Q, Li M, Xu J, Lin Z J, Yu H F et al. Reconfigurable directional coupler in lithium niobate crystal fabricated by three-dimensional femtosecond laser focal field engineering. Photonics Res 7, 503-507 (2019). doi: 10.1364/PRJ.7.000503

    CrossRef Google Scholar

    [58] Liao Y, Xu J, Cheng Y, Zhou Z H, He F et al. Electro-optic integration of embedded electrodes and waveguides in LiNbO3 using a femtosecond laser. Opt Lett 33, 2281-2283 (2008). doi: 10.1364/OL.33.002281

    CrossRef Google Scholar

    [59] Chen C, Akhmadaliev S, Romero C, Vázquez de Aldana J R, Zhou S Q et al. Ridge waveguides and Y-branch beam splitters in KTiOAsO4 crystal by 15 Mev oxygen ion implantation and femtosecond laser ablation. J Lightwave Technol 35, 225-229 (2017). doi: 10.1109/JLT.2016.2636998

    CrossRef Google Scholar

    [60] Li L Q, Nie W J, Li Z Q, Lu Q M, Romero C et al. All-laser-micromachining of ridge waveguides in LiNbO3 crystal for mid-infrared band applications. Sci Rep 7, 7034 (2017). doi: 10.1038/s41598-017-07587-w

    CrossRef Google Scholar

    [61] Ródenas A, Gu M, Corrielli G, Paiè P, John S et al. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics 13, 105-109 (2019). doi: 10.1038/s41566-018-0327-9

    CrossRef Google Scholar

    [62] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). doi: 10.1038/s41586-018-0551-y

    CrossRef Google Scholar

    [63] Burghoff J, Hartung H, Nolte S, Tünnermann A. Structural properties of femtosecond laser-induced modifications in LiNbO3. Appl Phys A 86, 165-170 (2007).

    Google Scholar

    [64] Ringleb S, Rademaker K, Nolte S, Tünnermann A. Monolithically integrated optical frequency converter and amplitude modulator in LiNbO3 fabricated by femtosecond laser pulses. Appl Phys B 102, 59-63 (2011). doi: 10.1007/s00340-010-4275-4

    CrossRef Google Scholar

    [65] Presti D A, Guarepi V, Videla F, Fasciszewski A, Torchia G A. Intensity modulator fabricated in LiNbO3 by femtosecond laser writing. Opt Laser Eng 111, 222-226 (2018). doi: 10.1016/j.optlaseng.2018.08.015

    CrossRef Google Scholar

    [66] Liu H L, Cheng C, Romero C, Vázquez de Aldana J R, Chen F. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides. Opt Express 23, 9730-9735 (2015). doi: 10.1364/OE.23.009730

    CrossRef Google Scholar

    [67] Liu H L, Vázquez de Aldana J R, Hong M H, Chen F. Femtosecond laser inscribed Y-branch waveguide in Nd:YAG crystal: fabrication and continuous-wave lasing. IEEE J Sel Top Quantum Electron 22, 227-230 (2016). doi: 10.1109/JSTQE.2015.2439191

    CrossRef Google Scholar

    [68] Caird J A, Payne S A, Staber P R, Ramponi A J, Chase L L et al. Quantum electronic properties of the Na3Ga2Li3F12: Cr3+ laser. IEEE J Quantum Electron 24, 1077-1099 (1988). doi: 10.1109/3.231

    CrossRef Google Scholar

    [69] Nie W J, Jia Y C, Vázquez de Aldana J R, Chen F. Efficient second harmonic generation in 3D nonlinear optical-lattice-like cladding waveguide splitters by femtosecond laser inscription. Sci Rep 6, 22310 (2016). doi: 10.1038/srep22310

    CrossRef Google Scholar

    [70] Wu R B, Zhang J H, Yao N, Fang W, Qiao L L et al. Lithium niobate micro-disk resonators of quality factors above 107. Opt Lett 43, 4116-4119 (2018). doi: 10.1364/OL.43.004116

    CrossRef Google Scholar

    [71] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator. Phys Rev Lett 122, 173903 (2019). doi: 10.1103/PhysRevLett.122.173903

    CrossRef Google Scholar

    [72] Boes A, Corcoran B, Chang L, Bowers J, Mitchell A. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits. Laser Photonics Rev 12, 1700256 (2018). doi: 10.1002/lpor.201700256

    CrossRef Google Scholar

    [73] Seri A, Corrielli G, Lago-Rivera D, Lenhard A, de Riedmatten H et al. Laser-written integrated platform for quantum storage of heralded single photons. Optica 5, 934-941 (2018). doi: 10.1364/OPTICA.5.000934

    CrossRef Google Scholar

    [74] Ren Y Y, Brown G, Ródenas A, Beecher S, Chen F et al. Mid-infrared waveguide lasers in rare-earth-doped YAG. Opt Lett 37, 3339-3341 (2012). doi: 10.1364/OL.37.003339

    CrossRef Google Scholar

    [75] Douglass G, Arriola A, Heras I, Martin G, Le Coarer E et al. Novel concept for visible and near infrared spectro-interferometry: laser-written layered arrayed waveguide gratings. Opt Express 26, 18470-18479 (2018). doi: 10.1364/OE.26.018470

    CrossRef Google Scholar

    [76] Norris B, Bland-Hawthorn J. Astrophotonics: The rise of integrated photonics in astronomy. Opt Photonics News 30, 26-33 (2019).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(2)

Article Metrics

Article views(14374) PDF downloads(3740) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint