Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D et al. 10-GHz broadband optical frequency comb generation at 1550/1310 nm. Opto-Electron Adv 3, 190033 (2020). doi: 10.29026/oea.2020.190033
Citation: Han J Y, Huang Y L, Wu J L, Li Z R, Yang Y D et al. 10-GHz broadband optical frequency comb generation at 1550/1310 nm. Opto-Electron Adv 3, 190033 (2020). doi: 10.29026/oea.2020.190033

Original Article Open Access

10-GHz broadband optical frequency comb generation at 1550/1310 nm

More Information
  • The generation of high-repetition rate (frep ≥ 10 GHz) ultra-broadband optical frequency combs (OFCs) at 1550 nm and 1310 nm is investigated by seeding two types of highly nonlinear fibers (HNLFs) with 10 GHz picosecond pulses at the pump wavelength of 1550 nm. When pumped near the zero dispersion wavelength (ZDW) in the normal dispersion region of a HNLF, 10 GHz flat-topped OFC with 43 nm bandwidth within 5 dB power variation is generated by self-phase modulation (SPM)-based OFC spectral broadening at 26.5 dBm pump power, and 291 fs pulse trains with 10 GHz repetition rate are obtained at 18 dBm pump power without complicated pulse shaping methods. Furthermore, when pumped in the abnormal dispersion region of a HNLF, OFCs with dispersive waves around 1310 nm are studied using a common HNLF and fluorotellurite fibers, which maintain the good coherence of the pump light at 1550 nm. At the same time, sufficient tunability of the generated dispersive waves is achieved when tuning the pump power or ZDW.
  • 加载中
  • [1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635-639 (2000). doi: 10.1126/science.288.5466.635

    CrossRef Google Scholar

    [2] Quinlan F, Ycas G, Osterman S, Diddams S A. A 12.5 GHz-spaced optical frequency comb spanning > 400 nm for near-infrared astronomical spectrograph calibration. Rev Sci Instrum 81, 063105 (2010). doi: 10.1063/1.3436638

    CrossRef Google Scholar

    [3] Wilken T, Curto G L, Probst R A, Steinmetz T, Manescau A et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485, 611-614 (2012). doi: 10.1038/nature11092

    CrossRef Google Scholar

    [4] Jiang Z, Huang C B, Leaird D E, Weiner A M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nat Photonics 1, 463-467 (2007). doi: 10.1038/nphoton.2007.139

    CrossRef Google Scholar

    [5] Cundiff S T, Weiner A M. Optical arbitrary waveform generation. Nat Photonics 4, 760-766 (2010). doi: 10.1038/nphoton.2010.196

    CrossRef Google Scholar

    [6] Hamidi E, Leaird D E, Weiner A M. Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans Microw Theory Tech 58, 3269-3278 (2010). doi: 10.1109/TMTT.2010.2076970

    CrossRef Google Scholar

    [7] Hu H, Da Ros F, Pu M H, Ye F H, Ingerslev K et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat Photonics 12, 469-473 (2018). doi: 10.1038/s41566-018-0205-5

    CrossRef Google Scholar

    [8] Bartels A, Heinecke D, Diddams S A. 10-GHz self-referenced optical frequency comb. Science 326, 681 (2009). doi: 10.1126/science.1179112

    CrossRef Google Scholar

    [9] Yoshida M, Yoshida K, Kasai K, Nakazawa M. 1.55 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser. Opt Express 24, 24287-24296 (2016). doi: 10.1364/OE.24.024287

    CrossRef Google Scholar

    [10] Nakazawa M, Kasai K, Yoshida M. C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 μm. Opt Lett 33, 2641-2643 (2008). doi: 10.1364/OL.33.002641

    CrossRef Google Scholar

    [11] Torres-Company V, Weiner A M. Optical frequency comb technology for ultra-broadband radio-frequency photonics. Laser Photonics Rev 8, 368-393 (2014). doi: 10.1002/lpor.201300126

    CrossRef Google Scholar

    [12] Dou Y J, Zhang H M, Yao M Y. Generation of flat optical-frequency comb using cascaded intensity and phase modulators. IEEE Photonics Technol Lett 24, 727-729 (2012). doi: 10.1109/LPT.2012.2187330

    CrossRef Google Scholar

    [13] Wu R, Supradeepa V R, Long C M, Leaird D E, Weiner A M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett 35, 3234-3236 (2010). doi: 10.1364/OL.35.003234

    CrossRef Google Scholar

    [14] Metcalf A J, Torres-Company V, Leaird D E, Weiner A M. High-power broadly tunable electrooptic frequency comb generator. IEEE J Sel Top Quant Electron 19, 3500306 (2013).

    Google Scholar

    [15] Ishizawa A, Nishikawa T, Mizutori A, Takara H, Aozasa S et al. Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset-locking. Electron Lett 46, 1343-1344 (2010). doi: 10.1049/el.2010.2228

    CrossRef Google Scholar

    [16] Yang X, Richardson D J, Petropoulos P. Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping. J Lightwave Technol 30, 1971-1977 (2012). doi: 10.1109/JLT.2012.2193383

    CrossRef Google Scholar

    [17] Yang T, Dong J J, Liao S S, Huang D X, Zhang X L. Comparison analysis of optical frequency comb generation with nonlinear effects in highly nonlinear fibers. Opt Express 21, 8508-8520 (2013). doi: 10.1364/OE.21.008508

    CrossRef Google Scholar

    [18] Myslivets E, Alic N, Radic S. High resolution measurement of arbitrary-dispersion fibers: dispersion map reconstruction techniques. J Lightwave Technol 28, 3478-3487 (2010).

    Google Scholar

    [19] Myslivets E, Kuo B P P, Alic N, Radic S. Generation of wideband frequency combs by continuous-wave seeding of multistage mixers with synthesized dispersion. Opt Express 20, 3331-3344 (2012). doi: 10.1364/OE.20.003331

    CrossRef Google Scholar

    [20] Ataie V, Temprana E, Liu L, Myslivets E, Kuo B P P et al. Ultrahigh count coherent WDM channels transmission using optical parametric comb-based frequency synthesizer. J Lightwave Technol 33, 694-699 (2015). doi: 10.1109/JLT.2015.2388579

    CrossRef Google Scholar

    [21] Rueda A, Sedlmeir F, Kumari M, Leuchs G, Schwefel H G L. Resonant electro-optic frequency comb. Nature 568, 378-381 (2019). doi: 10.1038/s41586-019-1110-x

    CrossRef Google Scholar

    [22] Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373-377 (2019). doi: 10.1038/s41586-019-1008-7

    CrossRef Google Scholar

    [23] Barry L P, Del Burgo S, Thomsen B, Watts R T, Reid D A et al. Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating. IEEE Photonics Technol Lett 14, 971-973 (2002). doi: 10.1109/LPT.2002.1012402

    CrossRef Google Scholar

    [24] Agrawal G P. Nonlinear Fiber Optics 3rd ed (Academic Press, San Diego, 2001).

    Google Scholar

    [25] Huang Y L, Li Q, Han J Y, Jia Z X, Yu Y S et al. Temporal soliton and optical frequency comb generation in a Brillouin laser cavity. Optica 6, 1491-1497 (2019). doi: 10.1364/OPTICA.6.001491

    CrossRef Google Scholar

    [26] Weng H Z, Han J Y, Li Q, Yang Y D, Xiao J L et al. Optical frequency comb generation based on the dual-mode square microlaser and a nonlinear fiber loop. Appl Phys B 124, 91 (2018).

    Google Scholar

    [27] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274-279 (2017). doi: 10.1038/nature22387

    CrossRef Google Scholar

    [28] Chen Z G, Taylor A J, Efimov A. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper. Opt Express 17, 5852-5860 (2009). doi: 10.1364/OE.17.005852

    CrossRef Google Scholar

    [29] Yao C C, Jia Z X, Li Z R, Jia S J, Zhao Z P et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica 5, 1264-1270 (2018). doi: 10.1364/OPTICA.5.001264

    CrossRef Google Scholar

    [30] Yao C C, Zhao Z P, Jia Z X, Li Q, Hu M L et al. Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber. Appl Phys Lett 109, 101102 (2016). doi: 10.1063/1.4962391

    CrossRef Google Scholar

    [31] Jia Z X, Yao C C, Jia S J, Wang F, Wang S B et al. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber. Appl Phys Lett 110, 261106 (2017). doi: 10.1063/1.4990681

    CrossRef Google Scholar

  • Supplementary information for 10-GHz broadband optical frequency comb generation at 1550/1310 nm
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(10170) PDF downloads(2078) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint