Zhao X Y, Deng W W. Printing photovoltaics by electrospray. Opto-Electron Adv 3, 190038 (2020). doi: 10.29026/oea.2020.190038
Citation: Zhao X Y, Deng W W. Printing photovoltaics by electrospray. Opto-Electron Adv 3, 190038 (2020). doi: 10.29026/oea.2020.190038

Review Open Access

Printing photovoltaics by electrospray

More Information
  • Solution processible photovoltaics (PV) are poised to play an important role in scalable manufacturing of low-cost solar cells. Electrospray is uniquely suited for fabricating PVs due to its several desirable characteristics of an ideal manufacturing process such as compatibility with roll-to-roll production processes, tunability and uniformity of droplet size, capability of operating at atmospheric pressure, and negligible material waste and nano structures. This review begins with an introduction of the fundamentals and unique properties of electrospray. We put emphasis on the evaporation time and residence time that jointly affect the deposition outcome. Then we review the efforts of electrospray printing polymer solar cells, perovskite solar cells, and dye sensitized solar cells. Collectively, these results demonstrate the advantages of electrospray for solution processed PV. Electrospray has also exhibited the capability of producing uniform films as well as nanostructured and even multiscale films. So far, the electrospray has been found to improve active layer morphology, and create devices with efficiencies comparable with that of spin-coating. Finally, we discuss challenges and research opportunities that enable electrospray to become a mainstream technique for industrial scale production.
  • 加载中
  • [1] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics 8, 506-514 (2014). doi: 10.1038/nphoton.2014.134

    CrossRef Google Scholar

    [2] Huang J S, Shao Y C, Dong Q F. Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J Phys Chem Lett 6, 3218-3227 (2015). doi: 10.1021/acs.jpclett.5b01419

    CrossRef Google Scholar

    [3] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131, 6050-6051 (2009). doi: 10.1021/ja809598r

    CrossRef Google Scholar

    [4] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316-319 (2013). doi: 10.1038/nature12340

    CrossRef Google Scholar

    [5] Green M A, Hishikawa Y, Dunlop E D, Levi D H, Hohl-Ebinger J et al. Solar cell efficiency tables (version 53). Prog Photovoltaics 27, 3-12 (2019). doi: 10.1002/pip.3102

    CrossRef Google Scholar

    [6] Cui Y, Yao H F, Zhang J Q, Zhang T, Wang Y M et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun 10, 2515 (2019). doi: 10.1038/s41467-019-10351-5

    CrossRef Google Scholar

    [7] Jiang K, Wei Q Y, Lai J Y L, Peng Z X, Kim H K et al. Alkyl chain tuning of small molecule acceptors for efficient organic solar cells. Joule 3, 3020-3033 (2019). doi: 10.1016/j.joule.2019.09.010

    CrossRef Google Scholar

    [8] Du X Y, Heumueller T, Gruber W, Classen A, Unruh T et al. Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years. Joule 3, 215-226 (2019). doi: 10.1016/j.joule.2018.09.001

    CrossRef Google Scholar

    [9] Gong J W, Liang J, Sumathy K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew Sust Energy Rev 16, 5848-5860 (2012). doi: 10.1016/j.rser.2012.04.044

    CrossRef Google Scholar

    [10] Gu X D, Shaw L, Gu K, Toney M F, Bao Z N. The meniscus-guided deposition of semiconducting polymers. Nat Commun 9, 534 (2018). doi: 10.1038/s41467-018-02833-9

    CrossRef Google Scholar

    [11] Zhang L, Lin B J, Hu B, Xu X B, Ma W. Blade-cast nonfullerene organic solar cells in air with excellent morphology, efficiency, and stability. Adv Mater 30, 1800343 (2018). doi: 10.1002/adma.201800343

    CrossRef Google Scholar

    [12] Wu W Q, Wang Q, Fang Y J, Shao Y C, Tang S et al. Molecular doping enabled scalable blading of efficient hole-transport-layer-free perovskite solar cells. Nat Commun 9, 1625 (2018). doi: 10.1038/s41467-018-04028-8

    CrossRef Google Scholar

    [13] Xu J, Wu H C, Zhu C X, Ehrlich A, Shaw L et al. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat Mater 18, 594-601 (2019). doi: 10.1038/s41563-019-0340-5

    CrossRef Google Scholar

    [14] Wu Q, Guo J, Sun R, Guo J, Jia S F et al. Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy 61, 559-566 (2019). doi: 10.1016/j.nanoen.2019.04.091

    CrossRef Google Scholar

    [15] Zuo C T, Vak D, Angmo D, Ding L M, Gao M. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46, 185-192 (2018). doi: 10.1016/j.nanoen.2018.01.037

    CrossRef Google Scholar

    [16] Yang J Y, Lin Y B, Zheng W H, Liu A L, Cai W Z et al. Roll-to-roll slot-die-printed polymer solar cells by self-assembly. ACS Appl Mater Interfaces 10, 22485-22494 (2018). doi: 10.1021/acsami.8b05673

    CrossRef Google Scholar

    [17] Eggenhuisen T M, Galagan Y, Coenen E W C, Voorthuijzen W P, Slaats M W L et al. Digital fabrication of organic solar cells by Inkjet printing using non-halogenated solvents. Solar Energy Mater Solar Cells 134, 364-372 (2015). doi: 10.1016/j.solmat.2014.12.014

    CrossRef Google Scholar

    [18] Eggenhuisen T M, Galagan Y, Biezemans A F K V, Slaats T M W L, Voorthuijzen W P et al. High efficiency, fully inkjet printed organic solar cells with freedom of design. J Mater Chem A 3, 7255-7262 (2015). doi: 10.1039/C5TA00540J

    CrossRef Google Scholar

    [19] Wei Z H, Chen H N, Yan K Y, Yang S H. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed 53, 13239-13243 (2014). doi: 10.1002/anie.201408638

    CrossRef Google Scholar

    [20] Liu A L, Zheng W H, Yin X L, Yang J Y, Lin Y B et al. Manipulate micrometer surface and nanometer bulk phase separation structures in the active layer of organic solar cells via synergy of ultrasonic and high-pressure gas spraying. ACS Appl Mater Interfaces 11, 10777-10784 (2019). doi: 10.1021/acsami.8b22215

    CrossRef Google Scholar

    [21] Duan H X, Li C, Yang W W, Lojewski B, An L et al. Near-field electrospray microprinting of polymer-derived ceramics. J Microelectromech Syst 22, 1-3 (2013). doi: 10.1109/JMEMS.2012.2226932

    CrossRef Google Scholar

    [22] Zhao X Y, Tao Z, Yang W W, Xu K C, Wang L et al. Morphology and electrical characteristics of polymer: Fullerene films deposited by electrospray. Solar Energy Mater Solar Cells 183, 137-145 (2018). doi: 10.1016/j.solmat.2018.04.013

    CrossRef Google Scholar

    [23] Zhao X Y, Yang W W, Cheng L, Wang X Z, Lim S L et al. Effects of Damkhöler number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method. Solar Energy Mater Solar Cells 134, 140-147 (2015). doi: 10.1016/j.solmat.2014.11.029

    CrossRef Google Scholar

    [24] Zheng J H, Zhang M, Lau C F J, Deng X F, Kim J et al. Spin-coating free fabrication for highly efficient perovskite solar cells. Solar Energy Mater Solar Cells 168, 165-171 (2017). doi: 10.1016/j.solmat.2017.04.029

    CrossRef Google Scholar

    [25] Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22, 135-159 (1989). doi: 10.1016/0304-3886(89)90081-8

    CrossRef Google Scholar

    [26] Deng W W, Gomez A. The role of electric charge in microdroplets impacting on conducting surfaces. Phys Fluids 22, 051703 (2010). doi: 10.1063/1.3431739

    CrossRef Google Scholar

    [27] Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64-71 (1989). doi: 10.1126/science.2675315

    CrossRef Google Scholar

    [28] Taylor G I. Disintegration of water drops in an electric field. Proc Roy Soc A Math Phys Eng Sci 280, 383-397 (1964). doi: 10.1098/rspa.1964.0151

    CrossRef Google Scholar

    [29] Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes. J Electrostat 25, 165-184 (1990). doi: 10.1016/0304-3886(90)90025-Q

    CrossRef Google Scholar

    [30] De La Mora J F. The fluid dynamics of Taylor cones. Annu Rev Fluid Mech 39, 217-243 (2007). doi: 10.1146/annurev.fluid.39.050905.110159

    CrossRef Google Scholar

    [31] Gomez A, Deng W W. Fundamentals of cone-jet electrospray. In Aerosol Measurement: Principles, Techniques, and Applications 3rd ed (Wiley, 2011);
    https://doi.org/10.1002/9781118001684.ch20.

    Google Scholar

    [32] De La Mora J F, Navascues J, Fernandez F, Rosell-Llompart J. Generation of submicron monodisperse aerosols in electrosprays. J Aerosol Sci 21, S673-S676 (1990). doi: 10.1016/0021-8502(90)90332-R

    CrossRef Google Scholar

    [33] Tang K Q, Gomez A. On the structure of an electrostatic spray of monodisperse droplets. Phys Fluids 6, 2317-2332 (1994). doi: 10.1063/1.868182

    CrossRef Google Scholar

    [34] Sazhin S S. Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 32, 162-214 (2005). doi: 10.1016/j.pecs.2005.11.001

    CrossRef Google Scholar

    [35] Zhao X Y, Johnston D E, Rodriguez J C, Tao Z, Mi B X et al. Nanostructured semiconducting polymer films with enhanced crystallinity and reorientation of crystalline domains by electrospray deposition. Macromol Mater Eng 302, 1700090 (2017). doi: 10.1002/mame.201700090

    CrossRef Google Scholar

    [36] Zhu T J, Li C, Yang W W, Zhao X Y, Wang X L et al. Electrospray dense suspensions of TiO2 nanoparticles for dye sensitized solar cells. Aerosol Sci Technol 47, 1302-1309 (2013). doi: 10.1080/02786826.2013.835027

    CrossRef Google Scholar

    [37] Tang J, Gomez A. Controlled mesoporous film formation from the deposition of electrosprayed nanoparticles. Aerosol Sci Technol 51, 755-765 (2017). doi: 10.1080/02786826.2017.1303573

    CrossRef Google Scholar

    [38] Gañán-Calvo A M, López-Herrera J M, Herrada M A, Ramos A, Montanero J M. Review on the physics of electrospray: from electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. J Aerosol Sci 125, 32-56 (2018). doi: 10.1016/j.jaerosci.2018.05.002

    CrossRef Google Scholar

    [39] Hartman R P A, Brunner D J, Camelot D M A, Marijnissen J C M, Scarlett B. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerosol Sci 31, 65-95 (2000). doi: 10.1016/S0021-8502(99)00034-8

    CrossRef Google Scholar

    [40] Park S E, Kim S, Kim K, Joe H E, Jung B et al. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods. Nanoscale 4, 7773-7779 (2012). doi: 10.1039/c2nr32165c

    CrossRef Google Scholar

    [41] Abramzon B, Sirignano W A. Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transfer 32, 1605-1618 (1989). doi: 10.1016/0017-9310(89)90043-4

    CrossRef Google Scholar

    [42] Yang W W, Lojewski B, Wei Y, Deng W W. Interactions and deposition patterns of multiplexed electrosprays. J Aerosol Sci 46, 20-33 (2012). doi: 10.1016/j.jaerosci.2011.11.004

    CrossRef Google Scholar

    [43] Deng W W, Klemic J F, Li X H, Reed M A, Gomez A. Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets. J Aerosol Sci 37, 696-714 (2006). doi: 10.1016/j.jaerosci.2005.05.011

    CrossRef Google Scholar

    [44] Kim J S, Chung W S, Kim K, Dong Y K, Paeng K J et al. Solar cells: performance optimization of polymer solar cells using electrostatically sprayed photoactive layers (Adv. Funct. Mater. 20/2010). Adv Funct Mater 20, 3402 (2010). doi: 10.1002/adfm.201090090

    CrossRef Google Scholar

    [45] Lingam B, Babu K R, Tewari S P, Vaitheeswaran G, Lebègue S. Quasiparticle band structure and optical properties of NH3BH3. Phys Status Solidi A 5, 10-12 (2011). doi: 10.1002/pssr.201004432

    CrossRef Google Scholar

    [46] Zhao X Y, Wang X Z, Lim S L, Qi D C, Wang R et al. Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Mater Solar Cells 121, 119-125 (2014). doi: 10.1016/j.solmat.2013.10.020

    CrossRef Google Scholar

    [47] Jiang Y Y, Wu C C, Li L R, Wang K, Tao Z et al. All electrospray printed perovskite solar cells. Nano Energy 53, 440-448 (2018). doi: 10.1016/j.nanoen.2018.08.062

    CrossRef Google Scholar

    [48] Gao F, Yi H, Qi L H, Qiao R, Deng W W. Weakly charged droplets fundamentally change impact dynamics on flat surfaces. Soft Matter 15, 5548-5553 (2019). doi: 10.1039/C9SM00895K

    CrossRef Google Scholar

    [49] Kelly R T, Page J S, Zhao R, Qian W J, Mottaz H M et al. Capillary-based multi nanoelectrospray emitters: improvements in ion transmission efficiency and implementation with capillary reversed-phase LC-ESI-MS. Anal Chem 80, 143-149 (2008). doi: 10.1021/ac701647s

    CrossRef Google Scholar

    [50] Duby M H, Deng W W, Kim K, Gomez T, Gomez A. Stabilization of monodisperse electrosprays in the multi-jet mode via electric field enhancement. J Aerosol Sci 37, 306-322 (2006). doi: 10.1016/j.jaerosci.2005.05.013

    CrossRef Google Scholar

    [51] Deng W W, Waits C M, Morgan B, Gomez A. Compact multiplexing of monodisperse electrosprays. J Aerosol Sci 40, 907-918 (2009). doi: 10.1016/j.jaerosci.2009.07.002

    CrossRef Google Scholar

    [52] Hu H Q, Rangou S, Kim M, Gopalan P, Filiz V et al. Continuous equilibrated growth of ordered block copolymer thin films by electrospray deposition. ACS Nano 7, 2960-2970 (2013). doi: 10.1021/nn400279a

    CrossRef Google Scholar

    [53] Lozano P, Martínez-Sánchez M. On the dynamic response of externally wetted ionic liquid ion sources. J Phys D: Appl Phys 38, 2371-2377 (2005). doi: 10.1088/0022-3727/38/14/011

    CrossRef Google Scholar

    [54] Rebollo-Muñnoz N, Montanero J M, Gañán-Calvo A M. On the use of hypodermic needles in electrospray. EPJ Web Conf 45, 01128 (2013). doi: 10.1051/epjconf/20134501128

    CrossRef Google Scholar

    [55] Sorensen G. Ion bombardment of electrosprayed coatings: an alternative to reactive sputtering? Surf Coat Technol 112, 221-225 (1999). doi: 10.1016/S0257-8972(98)00794-4

    CrossRef Google Scholar

    [56] Sen A, Darabi J, Knapp D, Liu J. Modeling and characterization of a carbon fiber emitter for electrospray ionization. J Micromech Microeng 16, 620-630 (2006). doi: 10.1088/0960-1317/16/3/018

    CrossRef Google Scholar

    [57] Kallman H, Pope M. Photovoltaic effect in organic crystals. J Chem Phys 30, 585-586 (1959). doi: 10.1063/1.1729992

    CrossRef Google Scholar

    [58] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789-1791 (1995). doi: 10.1126/science.270.5243.1789

    CrossRef Google Scholar

    [59] Heeger A J. Semiconducting polymers: the third generation. Chem Soc Rev 39, 2354-2371 (2010). doi: 10.1039/b914956m

    CrossRef Google Scholar

    [60] Liang Y Y, Xu Z, Xia J B, Tsai S T, Wu Y et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv Mater 22, E135-E138 (2010). doi: 10.1002/adma.200903528

    CrossRef Google Scholar

    [61] Sirringhaus H, Brown P J, Friend R H, Nielsen M M, Bechgaard K et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685-688 (1999). doi: 10.1038/44359

    CrossRef Google Scholar

    [62] Kim Y, Cook S, Tuladhar S M, Choulis S A, Nelson J et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mat 5, 197-203 (2006). doi: 10.1038/nmat1574

    CrossRef Google Scholar

    [63] Hlaing H, Lu X H, Hofmann T, Yager K G, Black C T et al. Nanoimprint-induced molecular orientation in semiconducting polymer nanostructures. ACS Nano 5, 7532-7538 (2011). doi: 10.1021/nn202515z

    CrossRef Google Scholar

    [64] Johnston D E, Yager K G, Hlaing H, Lu X H, Ocko B M et al. Nanostructured surfaces frustrate polymer semiconductor molecular orientation. ACS Nano 8, 243-249 (2014). doi: 10.1021/nn4060539

    CrossRef Google Scholar

    [65] Fukuda T, Suzuki K, Yoshimoto N, Liao Y J. Controlled donor-accepter ratio for application of organic photovoltaic cells by alternative intermittent electrospray co-deposition. Org Electron 33, 32-39 (2016). doi: 10.1016/j.orgel.2016.03.011

    CrossRef Google Scholar

    [66] Fukuda T, Toda A, Takahira K, Suzuki K, Liao Y J et al. Molecular ordering of spin-coated and electrosprayed P3HT: PCBM thin films and their applications to photovoltaic cell. Thin Solid Films 612, 373-380 (2016). doi: 10.1016/j.tsf.2016.06.019

    CrossRef Google Scholar

    [67] Fukuda T, Toda A, Takahira K, Kuzuhara D, Yoshimoto N. Improved performance of organic photovoltaic cells with PTB7-Th: PC71 BM by optimized solvent evaporation time in electrospray deposition. Org Electron 48, 96-105 (2017). doi: 10.1016/j.orgel.2017.05.049

    CrossRef Google Scholar

    [68] Takahira K, Toda A, Suzuki K, Fukuda T. Highly efficient organic photovoltaic cells fabricated by electrospray deposition using a non-halogenated solution. Phys Status Solidi A 214, 1600536 (2017). doi: 10.1002/pssa.201600536

    CrossRef Google Scholar

    [69] Khanum K K, Anakkavoor Krishnaswamy J, Ramamurthy P C. Design and fabrication of photonic structured organic solar cells by electrospraying. J Phys Chem C 121, 8531-8540 (2017). doi: 10.1021/acs.jpcc.7b01698

    CrossRef Google Scholar

    [70] Kimoto A, Takaku H, Hayakawa H, Koseki M, Ishihama R et al. Multilayer organic photovoltaic devices fabricated by electrospray deposition technique and the role of the interlayer. Thin Solid Films 636, 302-306 (2017). doi: 10.1016/j.tsf.2017.06.026

    CrossRef Google Scholar

    [71] Hong S C, Lee G, Ha K, Yoon J, Ahn N et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system. ACS Appl Mater Interfaces 9, 7879-7884 (2017). doi: 10.1021/acsami.6b15095

    CrossRef Google Scholar

    [72] Lin P Y, Chen Y Y, Guo T F, Fu Y S, Lai L C et al. Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Adv 7, 10985-10991 (2017). doi: 10.1039/C6RA27704G

    CrossRef Google Scholar

    [73] Kavadiya S, Niedzwiedzki D M, Huang S, Biswas P. Electrospray-assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions. Adv Energy Mater 7, 1700210 (2017). doi: 10.1002/aenm.201700210

    CrossRef Google Scholar

    [74] Hsu K C, Lee C H, Guo T F, Chen T H, Fang T H et al. Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Org Electron 57, 221-225 (2018). doi: 10.1016/j.orgel.2018.03.016

    CrossRef Google Scholar

    [75] Han S, Kim H, Lee S, Kim C. Efficient planar-heterojunction perovskite solar cells fabricated by high-throughput sheath-gas-assisted electrospray. ACS Appl Mater Interfaces 10, 7281-7288 (2018). doi: 10.1021/acsami.7b18643

    CrossRef Google Scholar

    [76] Deng Y H, Zheng X P, Bai Y, Wang Q, Zhao J J et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat Energy 3, 560-566 (2018). doi: 10.1038/s41560-018-0153-9

    CrossRef Google Scholar

    [77] He M, Li B, Cui X, Jiang B B, He Y J et al. Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells. Nat Commun 8, 16045 (2017). doi: 10.1038/ncomms16045

    CrossRef Google Scholar

    [78] Li J B, Munir R, Fan Y Y, Niu T Q, Liu Y C et al. Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2, 1313-1330 (2018). doi: 10.1016/j.joule.2018.04.011

    CrossRef Google Scholar

    [79] Hwang K, Jung Y S, Heo Y J, Scholes F H, Watkins S E et al. Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv Mater 27, 1241-1247 (2015). doi: 10.1002/adma.201404598

    CrossRef Google Scholar

    [80] Yang Z B, Chueh C C, Zuo F, Kim J H, Liang P W et al. High-performance fully printable perovskite solar cells via blade-coating technique under the ambient condition. Adv Energy Mater 5, 1500328 (2015). doi: 10.1002/aenm.201500328

    CrossRef Google Scholar

    [81] Qin T S, Huang W C, Kim J E, Vak D, Forsyth C et al. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210-217 (2017). doi: 10.1016/j.nanoen.2016.11.022

    CrossRef Google Scholar

    [82] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295-298 (2014). doi: 10.1126/science.1254763

    CrossRef Google Scholar

    [83] Lee J W, Na S I, Kim S S. Efficient spin-coating-free planar heterojunction perovskite solar cells fabricated with successive brush-painting. J Power Sources 339, 33-40 (2017). doi: 10.1016/j.jpowsour.2016.11.028

    CrossRef Google Scholar

    [84] Jung Y S, Hwang K, Heo Y J, Kim J E, Lee D et al. One-step printable perovskite films fabricated under ambient conditions for efficient and reproducible solar cells. ACS Appl Mater Interfaces 9, 27832-27838 (2017). doi: 10.1021/acsami.7b05078

    CrossRef Google Scholar

    [85] Bashir A, Shukla S, Lew J H, Shukla S, Bruno A et al. Spinel Co3O4 nanomaterials for efficient and stable large area carbon-based printed perovskite solar cells. Nanoscale 10, 2341-2350 (2018). doi: 10.1039/C7NR08289D

    CrossRef Google Scholar

    [86] O'Regan B, Grsätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740 (1991). doi: 10.1038/353737a0

    CrossRef Google Scholar

    [87] Bach U, Lupo D, Comte P, Moser J E, Weissörtel F et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583-585 (1998). doi: 10.1038/26936

    CrossRef Google Scholar

    [88] Hagfeldt A, Grätzel M. Molecular photovoltaics. Acc Chem Res 33, 269-277 (2000). doi: 10.1021/ar980112j

    CrossRef Google Scholar

    [89] Grätzel M. Photoelectrochemical cells. Nature 414, 338-344 (2001). doi: 10.1038/35104607

    CrossRef Google Scholar

    [90] Grätzel M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A: Chem 164, 3-14 (2004). doi: 10.1016/j.jphotochem.2004.02.023

    CrossRef Google Scholar

    [91] Sonai G G, Tiihonen A, Miettunen K, Lund P D, Nogueira A F. Long-term stability of dye-sensitized solar cells assembled with cobalt polymer gel electrolyte. J Phys Chem C 121, 17577-17585 (2017). doi: 10.1021/acs.jpcc.7b03865

    CrossRef Google Scholar

    [92] Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J I et al. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51, 15894-15897 (2015). doi: 10.1039/C5CC06759F

    CrossRef Google Scholar

    [93] Widodo S, Wiranto G, Hidayat M N. Fabrication of dye sensitized solar cells with spray coated Carbon Nano Tube (CNT) based counter electrodes. Energy Procedia 68, 37-44 (2015). doi: 10.1016/j.egypro.2015.03.230

    CrossRef Google Scholar

    [94] Kabir F, Sakib S N, Matin N. Stability study of natural green dye based DSSC. Optik 181, 458-464 (2019). doi: 10.1016/j.ijleo.2018.12.077

    CrossRef Google Scholar

    [95] Ito S, Murakami T N, Comte P, Liska P, Grätzel C et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613-4619 (2008). doi: 10.1016/j.tsf.2007.05.090

    CrossRef Google Scholar

    [96] Kim Y J, Lee M H, Kim H J, Lim G, Choi Y S et al. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv Mater 21, 3668-3673 (2009). doi: 10.1002/adma.200900294

    CrossRef Google Scholar

    [97] Fujimoto M, Kado T, Takashima W, Kaneto K, Hayase S. Dye-sensitized solar cells fabricated by electrospray coating using TiO2 nanocrystal dispersion solution. J Electrochem Soc 153, A826-A829 (2006). doi: 10.1149/1.2179368

    CrossRef Google Scholar

    [98] Zhang Y Z, Wu L H, Xie E Q, Duan H G, Han W H et al. A simple method to prepare uniform-size nanoparticle TiO2 electrodes for dye-sensitized solar cells. J Power Sources 189, 1256-1263 (2009). doi: 10.1016/j.jpowsour.2009.01.023

    CrossRef Google Scholar

    [99] Sudhagar P, Asokan K, Jung J H, Lee Y G, Park S et al. Efficient performance of electrostatic spray-deposited TiO2 blocking layers in dye-sensitized solar cells after swift heavy ion beam irradiation. Nanoscale Res Lett 6, 30 (2011).

    Google Scholar

    [100] Hwang D, Lee H, Jang S Y, Jo S M, Kim D et al. Electrospray preparation of hierarchically-structured mesoporous TiO2 spheres for use in highly efficient dye-sensitized solar cells. ACS Appl Mater Interfaces 3, 2719-2725 (2011). doi: 10.1021/am200517v

    CrossRef Google Scholar

    [101] Huang F Z, Chen D H, Zhang L X, Caruso R A, Cheng Y B. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv Funct Mater 20, 1301-1305 (2010). doi: 10.1002/adfm.200902218

    CrossRef Google Scholar

    [102] Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21, 2206-2210 (2009). doi: 10.1002/adma.200802603

    CrossRef Google Scholar

    [103] Chou T P, Zhang Q, Fryxell G E, Cao G Z. Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency. Adv Mater 19, 2588-2592 (2007). doi: 10.1002/adma.200602927

    CrossRef Google Scholar

    [104] Sheng X, Zhao Y, Zhai J, Jiang L, Zhu D. Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells. Appl Phys A 87, 715-719 (2007). doi: 10.1007/s00339-007-3869-0

    CrossRef Google Scholar

    [105] Hong J T, Seo H, Lee D G, Jang J J, An T P et al. A nano-porous TiO2 thin film coating method for dye sensitized solar cells (DSSCs) using electrostatic spraying with dye solution. J Electrostat 68, 205-211 (2010). doi: 10.1016/j.elstat.2010.02.002

    CrossRef Google Scholar

    [106] Hogan C J, Biswas P. Porous film deposition by electrohydrodynamic atomization of nanoparticle sols. Aerosol Sci Technol 42, 75-85 (2008). doi: 10.1080/02786820701787951

    CrossRef Google Scholar

    [107] Modesto-Lopez L B, Biswas P. Role of the effective electrical conductivity of nanosuspensions in the generation of TiO2 agglomerates with electrospray. J Aerosol Sci 41, 790-804 (2010). doi: 10.1016/j.jaerosci.2010.04.010

    CrossRef Google Scholar

    [108] Tang J, Gomez A. Control of the mesoporous structure of dye-sensitized solar cells with electrospray deposition. J Mater Chem A 3, 7830-7839 (2015). doi: 10.1039/C5TA00288E

    CrossRef Google Scholar

    [109] Chan B P, Leong K W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17, 467-479 (2008). doi: 10.1007/s00586-008-0745-3

    CrossRef Google Scholar

    [110] Bochenkov V E, Sergeev G B, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures. In Metal Oxide Nanostructures and Their Applications (American Scientific Publishers, 2010).

    Google Scholar

    [111] Tang J, Liu W, Wang H L, Gomez A. High performance metal oxide-graphene hybrid nanomaterials synthesized via opposite-polarity electrosprays. Adv Mater 28, 10298-10303 (2016). doi: 10.1002/adma.201603339

    CrossRef Google Scholar

    [112] Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: current state and prospects. J Mater Chem A 4, 11973-12000 (2016). doi: 10.1039/C6TA02334G

    CrossRef Google Scholar

    [113] Kovalenko M V, Protesescu L, Bodnarchuk M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745-750 (2017). doi: 10.1126/science.aam7093

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(2)

Article Metrics

Article views(10295) PDF downloads(3239) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint