Lee E, Sun B, Luo J Q, Singh S, Choudhury D et al. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels. Opto-Electron Adv 3, 190039 (2020). doi: 10.29026/oea.2020.190039
Citation: Lee E, Sun B, Luo J Q, Singh S, Choudhury D et al. Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels. Opto-Electron Adv 3, 190039 (2020). doi: 10.29026/oea.2020.190039

Original Article Open Access

Compact pulsed thulium-doped fiber laser for topographical patterning of hydrogels

More Information
  • We report the generation of high energy 2 μm picosecond pulses from a thulium-doped fiber master oscillator power amplifier system. The all-fiber configuration was realized by a flexible large-mode area photonic crystal fiber (LMA-PCF). The amplifier output is a linearly-polarized 1.5 ns, 100 kHz pulse train with a pulse energy of up to 250 μJ. Pulse compression was achieved with (2+2)-pass chirped volume Bragg grating (CVBG) to obtain a 2.8 ps pulse width with a total pulse energy of 46 μJ. The overall system compactness was enabled by the all-fiber amplifier design and the multi-pass CVBG-based compressor. The laser output was then used to demonstrate high-speed direct-writing capability on a temperature-sensitive biomaterial to change its topography (i.e. fabricate microchannels, foams and pores). The topographical modifications of biomaterials are known to influence cell behavior and fate which is potentially useful in many cell and tissue engineering applications.
  • 加载中
  • [1] Gehlich N, Bonhoff T, Sisken L, Ramme M, Gaida C et al. Utilizing the transparency of semiconductors via "backside" machining with a nanosecond 2 μm Tm:fiber laser. Proc SPIE 8968, 89680W (2014). doi: 10.1117/12.2040306

    CrossRef Google Scholar

    [2] Voisiat B, Gaponov D, Gečys P, Lavoute L, Silva M et al. Material processing with ultra-short pulse lasers working in 2μm wavelength range. Proc SPIE 9350, 935014 (2015). doi: 10.1117/12.2078651

    CrossRef Google Scholar

    [3] Blackmon R L, Fried N M, Irby P B. Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 16, 071403 (2011). doi: 10.1117/1.3564884

    CrossRef Google Scholar

    [4] Jansen F, Stutzki F, Jauregui C, Limpert J, Tünnermann A. High-power very large mode-area thulium-doped fiber laser. Opt Lett 37, 4546-4548 (2012). doi: 10.1364/OL.37.004546

    CrossRef Google Scholar

    [5] Maine P, Strickland D, Bado P, Pessot M, Mourou G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron 24, 398-403 (1988). doi: 10.1109/3.137

    CrossRef Google Scholar

    [6] Gaida C, Gebhardt M, Heuermann T, Stutzki F, Jauregui C et al. Ultrafast thulium fiber laser system emitting more than 1 kW of average power. Opt Lett 43, 5853-5856 (2018). doi: 10.1364/OL.43.005853

    CrossRef Google Scholar

    [7] Gaida C, Gebhardt M, Stutzki F, Jauregui C, Limpert J et al. 90 fs pulses with > 5 GW peak power from a high repetition rate Tm-doped fiber CPA system. In Advanced Solid State Lasers 2017 (Optical Society of America, 2017);https://doi.org/10.1364/ASSL.2017.ATh3A.5.

    Google Scholar

    [8] Gaponov D, Lavoute L, Ducros N, Hideur A, Février S. 10 μJ-Class compact thulium all-fibered CPA system. In 2017 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (Optical Society of America, 2017).

    Google Scholar

    [9] Luo J Q, Sun B, Ji J H, Tan E L, Zhang Y et al. High-efficiency femtosecond Raman soliton generation with a tunable wavelength beyond 2μm. Opt Lett 42, 1568-1571 (2017). doi: 10.1364/OL.42.001568

    CrossRef Google Scholar

    [10] Lyot B. Optical apparatus with wide field using interference of polarized light. C R Acad Sci 197, 1593 (1933). doi: 10.1007/s12596-015-0256-7

    CrossRef Google Scholar

    [11] Imani R, Emami S H, Moshtagh P R, Baheiraei N, Sharifi A M. Preparation and characterization of agarose-gelatin blend hydrogels as a cell encapsulation matrix: an in-vitro study. J Macromol Sci, Part B 51, 1606-1616 (2012). doi: 10.1080/00222348.2012.657110

    CrossRef Google Scholar

    [12] Sincore A, Bradford J D, Cook J, Shah L, Richardson M C. High average power thulium-doped silica fiber lasers: review of systems and concepts. IEEE J Sel Top Quantum Electron 24, 0901808 (2018). doi: 10.1109/JSTQE.2017.2775964

    CrossRef Google Scholar

    [13] Schimpf D N, Seise E, Limpert J, Tünnermann A. Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples. Opt Express 16, 8876-8886 (2008). doi: 10.1364/OE.16.008876

    CrossRef Google Scholar

    [14] Schimpf D N, Seise E, Limpert J, Tünnermann A. Self-phase modulation compensated by positive dispersion in chirped-pulse systems. Opt Express 17, 4997-5007 (2009). doi: 10.1364/OE.17.004997

    CrossRef Google Scholar

    [15] Lee E, Luo J Q, Sun B, Ramalingam V, Zhang Y et al. Flexible single-mode delivery of a high-power 2μm pulsed laser using an antiresonant hollow-core fiber. Opt Lett 43, 2732-2735 (2018). doi: 10.1364/OL.43.002732

    CrossRef Google Scholar

    [16] Schimpf D N, Limpert J, Tünnermann A. Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum. Opt Express 15, 16945-16953 (2007). doi: 10.1364/OE.15.016945

    CrossRef Google Scholar

    [17] Chen Y H, Raghuraman S, Ho D, Tang D Y, Yoo S. Normal dispersion thulium fiber for ultrafast near-2 μm fiber laser. In 2018 Conference on Lasers and Electro-Optics: CLEO: Applications and Technology 2018 (Optical Society of America, 2018); https://doi.org/10.1364/CLEO_AT.2018.AM2M.2.

    Google Scholar

    [18] Bartulevicius T, Frankinas S, Michailovas A, Vasilyeu R, Smirnov V et al. Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile. Opt Express 25, 19856-19862 (2017). doi: 10.1364/OE.25.019856

    CrossRef Google Scholar

    [19] Turunen S, Haaparanta A M, Äänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro. J Tissue Eng Regen Med 7, 253-270 (2013). doi: 10.1002/term.520

    CrossRef Google Scholar

    [20] Yu T Y, Ober C K. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate. Biomacromolecules 4, 1126-1131 (2003). doi: 10.1021/bm034079m

    CrossRef Google Scholar

    [21] Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33, 5230-5246 (2012). doi: 10.1016/j.biomaterials.2012.03.079

    CrossRef Google Scholar

    [22] Kim H N, Jiao A, Hwang N S, Kim M S, Kang D H et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65, 536-558 (2013). doi: 10.1016/j.addr.2012.07.014

    CrossRef Google Scholar

    [23] Dalby M J, Gadegaard N, Oreffo R O C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater 13, 558-569 (2014). doi: 10.1038/nmat3980

    CrossRef Google Scholar

    [24] Brandl F, Sommer F, Goepferich A. Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. Biomaterials 28, 134-146 (2007). doi: 10.1016/j.biomaterials.2006.09.017

    CrossRef Google Scholar

    [25] Burg K J, Porter S, Kellam J F. Biomaterial developments for bone tissue engineering. Biomaterials 21, 2347-2359 (2000). doi: 10.1016/S0142-9612(00)00102-2

    CrossRef Google Scholar

    [26] Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6, 2711-2720 (2010). doi: 10.1016/j.actbio.2010.01.016

    CrossRef Google Scholar

    [27] Anene-Nzelu C G, Choudhury D, Li H P, Fraiszudeen A, Peh K Y et al. Scalable cell alignment on optical media substrates. Biomaterials 34, 5078-5087 (2013). doi: 10.1016/j.biomaterials.2013.03.070

    CrossRef Google Scholar

    [28] Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044-3063 (2006). doi: 10.1016/j.biomaterials.2005.12.024

    CrossRef Google Scholar

    [29] Chaudhari A A, Vig K, Baganizi D R, Sahu R, Dixit S et al. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17, 1974 (2016). doi: 10.3390/ijms17121974

    CrossRef Google Scholar

    [30] Liu X H, Ma P X. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32, 477-486 (2004). doi: 10.1023/B:ABME.0000017544.36001.8e

    CrossRef Google Scholar

    [31] Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6, 2494-2500 (2010). doi: 10.1016/j.actbio.2009.09.029

    CrossRef Google Scholar

    [32] Subia B, Kundu J, Kundu S C. Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng 141 (InTech. 2010).

    Google Scholar

    [33] Chrisey D B. The power of direct writing. Science 289, 879-881 (2000). doi: 10.1126/science.289.5481.879

    CrossRef Google Scholar

    [34] Hribar K C, Soman P, Warner J, Chung P, Chen S C. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14, 268-275 (2014). doi: 10.1039/C3LC50634G

    CrossRef Google Scholar

    [35] Wu P K, Ringeisen B R, Krizman D B, Frondoza C G, Brooks M et al. Laser transfer of biomaterials: Matrix-assisted pulsed laser evaporation (MAPLE) and MAPLE Direct Write. Rev Sci Instrum 74, 2546-2557 (2003). doi: 10.1063/1.1544081

    CrossRef Google Scholar

    [36] Johnston-Banks F. Gelatine. In Food Gels 233-289 (Springer, 1990); https://doi.org/10.1007/978-94-009-0755-3_7.

    Google Scholar

    [37] Tijore A, Irvine S A, Sarig U, Mhaisalkar P, Baisane V et al. Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 10, 025003 (2018). doi: 10.1088/1758-5090/aaa15d

    CrossRef Google Scholar

    [38] Kobuszewska A, Tomecka E, Zukowski K, Jastrzebska E, Chudy M et al. Heart-on-a-Chip: an investigation of the influence of static and perfusion conditions on cardiac (H9C2) cell proliferation, morphology, and alignment. SLAS Technol: Transl Life Sci Innov 22, 536-546 (2017). doi: 10.1177/2472630317705610

    CrossRef Google Scholar

    [39] Korin N, Bransky A, Khoury M, Dinnar U, Levenberg S. Design of well and groove microchannel bioreactors for cell culture. Biotechnol Bioeng 102, 1222-1230 (2009). doi: 10.1002/bit.22153

    CrossRef Google Scholar

    [40] Gaspard S, Oujja M, Abrusci C, Catalina F, Lazare S et al. Laser induced foaming and chemical modifications of gelatine films. J Photochem Photobiol A: Chem 193, 187-192 (2008). doi: 10.1016/j.jphotochem.2007.06.024

    CrossRef Google Scholar

    [41] Lazare S, Tokarev V, Sionkowska A, Wiśniewski M. Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys A 81, 465-470 (2005). doi: 10.1007/s00339-005-3260-y

    CrossRef Google Scholar

    [42] Simoni R C, Lemes G F, Fialho S, Gonçalves O H, Gozzo A M et al. Effect of drying method on mechanical, thermal and water absorption properties of enzymatically crosslinked gelatin hydrogels. An Acad Bras Ciênc 89, 745-755 (2017). doi: 10.1590/0001-3765201720160241

    CrossRef Google Scholar

    [43] Emoto H, Kambic H, Chen J F, Nosé Y. Characterization of rehydrated gelatin gels. Artif Organs 15, 29-34 (1991). doi: 10.1111/j.1525-1594.1991.tb00756.x

    CrossRef Google Scholar

    [44] Viswanathan P, Ondeck M G, Chirasatitsin S, Ngamkham K, Reilly G C et al. 3D surface topology guides stem cell adhesion and differentiation. Biomaterials 52, 140-147 (2015). doi: 10.1016/j.biomaterials.2015.01.034

    CrossRef Google Scholar

    [45] O'Brien F J, Harley B A, Yannas I V, Gibson L J. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26, 433-441 (2005). doi: 10.1016/j.biomaterials.2004.02.052

    CrossRef Google Scholar

    [46] Eiselt P, Yeh J, Latvala R K, Shea L D, Mooney D J. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21, 1921-1927 (2000). doi: 10.1016/S0142-9612(00)00033-8

    CrossRef Google Scholar

    [47] Van Tienen T G, Heijkants Ralf G J C, Buma P, de Groot J H, Pennings A J et al. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes. Biomaterials 23, 1731-1738 (2002). doi: 10.1016/S0142-9612(01)00280-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(7668) PDF downloads(2138) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint