Zhang X J, Li W W, Li J, Xu H Y, Cai Z P et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020). doi: 10.29026/oea.2020.190032
Citation: Zhang X J, Li W W, Li J, Xu H Y, Cai Z P et al. Mid-infrared all-fiber gain-switched pulsed laser at 3 μm. Opto-Electron Adv 3, 190032 (2020). doi: 10.29026/oea.2020.190032

Original Article Open Access

Mid-infrared all-fiber gain-switched pulsed laser at 3 μm

More Information
  • Mid-infrared (MIR) fiber pulsed lasers are of tremendous application interest in eye-safe LIDAR, spectroscopy, chemical detection and medicine. So far, these MIR lasers largely required bulk optical elements, complex free-space light alignment and large footprint, precluding compact all-fiber structure. Here, we proposed and demonstrated an all-fiberized structured gain-switched Ho3+-doped ZBLAN fiber laser operating around 2.9 μm. A home-made 1146 nm Raman fiber pulsed laser was utilized to pump highly concentrated single-cladding Ho3+-doped ZBLAN fiber with different lengths of 2 m or 0.25 m. A home-made MIR fiber mirror and a perpendicular-polished ZBLAN fiber end construct the all-fiberized MIR cavity. Stable gain-switched multiple states with a sub-pulse number tuned from 1 to 8 were observed. The effects of gain fiber length, pump power, pump repetition rate and output coupling ratio on performance of gain-switched pulses were further investigated in detail. The shortest pulse duration of 283 ns was attained with 10 kHz repetition rate. The pulsed laser, centered at 2.92 μm, had a maximum average output power of 54.2 mW and a slope efficiency of 10.12%. It is, to the best of our knowledge, the first time to demonstrate a mid-infrared gain-switched Ho3+:ZBLAN fiber laser with compact all-fiber structure.
  • 加载中
  • [1] Arnold G E, Hiesinger H, Helbert J, Peter G, Walter I. MERTIS−thermal infrared imaging of Mercury: advances in mid-IR remote sensing technology for planetary exploration. Proc SPIE 7808, 78080I (2010). doi: 10.1117/12.860144

    CrossRef Google Scholar

    [2] Kaufmann R, Hartmann A, Hibst R. Cutting and skin-ablative properties of pulsed mid-infrared laser surgery. J Dermatol Surg Oncol 20, 112-118 (1994). doi: 10.1111/j.1524-4725.1994.tb00123.x

    CrossRef Google Scholar

    [3] Bekman H H P T, van den Heuvel J C, van Putten F J M, Schleijpen R. Development of a mid-infrared laser for study of infrared countermeasures techniques. Proc. SPIE 5615, 27-38 (2004). doi: 10.1117/12.578214

    CrossRef Google Scholar

    [4] Zhu X S, Jain R. Watt-level 100-nm tunable 3-μm fiber laser. IEEE Photonics Technol Lett 20, 156-158 (2008). doi: 10.1109/LPT.2007.912495

    CrossRef Google Scholar

    [5] Li J F, Wang L L, Luo H Y, Xie J T, Liu Y. High power cascaded erbium doped fluoride fiber laser at room temperature. IEEE Photonics Technol Lett 28, 673-676 (2016). doi: 10.1109/LPT.2015.2504462

    CrossRef Google Scholar

    [6] Aydin Y O, Fortin V, Vallée R, Bernier M. Towards power scaling of 2.8  μm fiber lasers. Opt Lett 43, 4542-4545 (2018). doi: 10.1364/OL.43.004542

    CrossRef Google Scholar

    [7] Jackson S D. Singly Ho3+-doped fluoride fibre laser operating at 2.92 μm. Electron Lett 40, 1400-1401 (2004). doi: 10.1049/el:20046463

    CrossRef Google Scholar

    [8] Li J F, Luo H Y, Wang L L, Liu Y, Yan Z J et al. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm. Sci Rep 5, 10770 (2015). doi: 10.1038/srep10770

    CrossRef Google Scholar

    [9] Woodward R I, Hudson D D, Fuerbach A, Jackson S D. Generation of 70-fs pulses at 2.86 μm from a mid-infrared fiber laser. Opt Lett 42, 4893-4896 (2017). doi: 10.1364/OL.42.004893

    CrossRef Google Scholar

    [10] Jackson S D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl Phys Lett 83, 1316-1318 (2003). doi: 10.1063/1.1603353

    CrossRef Google Scholar

    [11] Luo H Y, Li J F, Gao Y, Xu Y, Li X H et al. Tunable passively Q-switched Dy3+-doped fiber laser from 2.71 to 3.08 μm using PbS nanoparticles. Opt Lett 44, 2322-2325 (2019). doi: 10.1364/OL.44.002322

    CrossRef Google Scholar

    [12] Coleman D J, King T A, Ko D K, Lee J. Q-switched operation of a 2.7 μm cladding-pumped Er3+/Pr3+ codoped ZBLAN fibre laser. Opt Commun 236, 379-385 (2004). doi: 10.1016/j.optcom.2004.03.051

    CrossRef Google Scholar

    [13] Hu T, Hudson D D, Jackson S D. Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser. Opt Lett 37, 2145-2147 (2012). doi: 10.1364/OL.37.002145

    CrossRef Google Scholar

    [14] Li J, Luo H, He Y L, Liu Y, Zhang L et al. Semiconductor saturable absorber mirror passively Q-switched 2.97 μm fluoride fiber laser. Laser Phys Lett 11, 065102 (2014). doi: 10.1088/1612-2011/11/6/065102

    CrossRef Google Scholar

    [15] Frerichs C, Unrau U B. Passive Q-switching and mode-locking of erbium-doped fluoride fiber lasers at 2.7 μm. Opt Fiber Technol 2, 358-366 (1996). doi: 10.1006/ofte.1996.0041

    CrossRef Google Scholar

    [16] Wei C, Zhang H, Shi H, Konynenbelt K, Luo H et al. Over 5-W passively Q-switched mid-infrared fiber laser with a wide continuous wavelength tuning range. IEEE Photonics Technol Lett 29, 881-884 (2017). doi: 10.1109/LPT.2017.2693387

    CrossRef Google Scholar

    [17] Li J F, Luo H Y, Wang L L, Zhao C J, Zhang H et al. 3-μm Mid-infrared pulse generation using topological insulator as the saturable absorber. Opt Lett 40, 3659-3662 (2015). doi: 10.1364/OL.40.003659

    CrossRef Google Scholar

    [18] Zhu G W, Zhu X S, Balakrishnan K, Norwood R A, Peyghambarian N. Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm. Opt Mater Exp 3, 1365-1377 (2013). doi: 10.1364/OME.3.001365

    CrossRef Google Scholar

    [19] Li J F, Luo H Y, Zhai B, Lu R G, Guo Z N et al. Black phosphorus: a two-dimension saturable absorption material for mid-infrared Q-switched and mode-locked fiber lasers. Sci Rep 6, 30361 (2016). doi: 10.1038/srep30361

    CrossRef Google Scholar

    [20] Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X et al. A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions. Nat Commun 8, 14111 (2017). doi: 10.1038/ncomms14111

    CrossRef Google Scholar

    [21] Dickinson B C, Golding P S, Pollnau M, King T A, Jackson S D. Investigation of a 791-nm pulsed-pumped 2.7-μm Er-doped ZBLAN fibre laser. Opt Commun 191, 315-321 (2001). doi: 10.1016/S0030-4018(01)01061-6

    CrossRef Google Scholar

    [22] Shen Y L, Huang K, Zhou S Q, Luan K P, Yu L et al. Gain-switched 2.8μm Er3+-doped double-clad ZBLAN fiber laser. Proc SPIE 9543, 95431E (2015).

    Google Scholar

    [23] Gorjan M, Petkovšek R, Marinček M, Čopič M. High-power pulsed diode-pumped Er:ZBLAN fiber laser. Opt Lett 36, 1923-1925 (2011). doi: 10.1364/OL.36.001923

    CrossRef Google Scholar

    [24] Li J F, Hu T, Jackson S D. Q-switched induced gain switching of a two-transition cascade laser. Opt Express 20, 13123-13128 (2012). doi: 10.1364/OE.20.013123

    CrossRef Google Scholar

    [25] Luo H Y, Li J F, Hai Y C, Lai X, Liu Y. State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm. Opt Express 26, 63-79 (2018). doi: 10.1364/OE.26.000063

    CrossRef Google Scholar

    [26] Jobin F, Fortin V, Maes F, Bernier M, Vallée R. Gain-switched fiber laser at 3.55 μm. Opt Lett 43, 1770-1773 (2018). doi: 10.1364/OL.43.001770

    CrossRef Google Scholar

    [27] Luo H Y, Li J F, Zhu C, Lai X, Hai Y C et al. Cascaded gain-switching in the mid-infrared region. Sci Rep 7, 16891 (2017). doi: 10.1038/s41598-017-17305-1

    CrossRef Google Scholar

    [28] Luo H Y, Yang J, Liu F, Hu Z, Xu Y et al. Watt-level gain-switched fiber laser at 3.46 μm. Opt Express 27, 1367-1375 (2019). doi: 10.1364/OE.27.001367

    CrossRef Google Scholar

    [29] Shen Y L, Wang Y S, Luan K P, Chen H W, Tao M M et al. Efficient wavelength-tunable gain-switching and gain-switched mode-locking operation of a heavily Er3+-doped ZBLAN mid-infrared fiber laser. IEEE Photonics J 9, 1504510 (2017).

    Google Scholar

    [30] Wei C, Luo H Y, Shi H X, Lyu Y J, Zhang H et al. Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm. Opt Express 25, 8816-8827 (2017). doi: 10.1364/OE.25.008816

    CrossRef Google Scholar

    [31] Shi Y, Li J, Luo H, Xu Y, Liu F et al. Gain-Switched Dual-Waveband Ho 3+ -Doped Fluoride Fiber Laser Based on Hybrid Pumping. IEEE Photonic Techl 31, 46-49 (2019). doi: 10.1109/LPT.2018.2882199

    CrossRef Google Scholar

    [32] Paradis P, Fortin V, Aydin Y O, Vallée R, Bernier M. 10 W-level gain-switched all-fiber laser at 2.8 μm. Opt Lett 43, 3196-3199 (2018). doi: 10.1364/OL.43.003196

    CrossRef Google Scholar

    [33] Wetenkamp L, West G F, Többen H. Co-doping effects in erbium3+-and holmium3+-doped ZBLAN glasses. J Non Cryst Solids 140, 25-30 (1992). doi: 10.1016/S0022-3093(05)80735-5

    CrossRef Google Scholar

    [34] Yang J L, Tang Y L, Xu J Q. Development and applications of gain-switched fiber lasers [Invited]. Photonics Res 1 52-57 (2013). doi: 10.1364/PRJ.1.000052

    CrossRef Google Scholar

    [35] Dickinson B C, Jackson S D, King T A. 10 mJ total output from a gain-switched Tm-doped fibre laser. Opt Commun 182, 199-203 (2000). doi: 10.1016/S0030-4018(00)00803-8

    CrossRef Google Scholar

    [36] Le Flohic M, Franchois P L, Allain J Y, Sanchez F, Stephan G M. Dynamics of the transient buildup of emission in Nd3+-doped fiber lasers. IEEE J Quantum Electron 27, 1910-1921 (1991). doi: 10.1109/3.83393

    CrossRef Google Scholar

    [37] Jiang M, Tayebati P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt Lett 32, 1797-1799 (2007). doi: 10.1364/OL.32.001797

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(8300) PDF downloads(2789) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint