-
Abstract
Multicore fiber (MCF) which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels. Different from the situation in standard single mode fiber (SMF), the fiber bending gives rise to tangential strain in off-center cores, and this unique feature has been employed for directional bending and shape sensing, where strain measurement is achieved by using either fiber Bragg gratings (FBGs), optical frequency-domain reflectometry (OFDR) or Brillouin distributed sensing technique. On the other hand, the parallel spatial cores enable space-division multiplexed (SDM) system configuration that allows for the multiplexing of multiple distributed sensing techniques. As a result, multi-parameter sensing or performance enhanced sensing can be achieved by using MCF. In this paper, we review the research progress in MCF based distributed fiber sensors. Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented. The bending sensitivity of off-center cores is analyzed. Curvature and shape sensing, as well as various SDM distributed sensing using MCF are summarized, and the working principles of diverse MCF sensors are discussed. Finally, we present the challenges and prospects of MCF for distributed sensing applications.
Keywords
-
-
References
Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photon 7, 354-362 (2013).
DOI: 10.1038/nphoton.2013.94Winzer P J. Making spatial multiplexing a reality. Nat Photonics 8, 345-348 (2014).
DOI: 10.1038/nphoton.2014.58Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865-870 (2014).
DOI: 10.1038/nphoton.2014.243Mizuno T, Takara H, Sano A, Miyamoto Y. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J Lightwave Technol 34, 582-592 (2016).
DOI: 10.1109/JLT.2015.2482901Ryf R, Sierra A, Essiambre R J, Gnauck A H, Randel S et al. Coherent 1200-km 6x6 MIMO mode-multiplexed transmission over 3-core microstructured fiber. In Proceedings of 37th European Conference and Exhibition on Optical Communication 1-3 (IEEE, 2011).
10.1364/ECOC.2011.Th.13.C.1 Gonda T, Imamura K, Sugizaki R, Kawaguchi Y, Tsuritani T. 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system. In Proceedings of 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).
Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference PDPB6 (Optical Society of America, 2011); https://doi.org/10.1364/OFC.2011.PDPB6.
10.1364/OFC.2011.PDPB6 https://doi.org/10.1364/OFC.2011.PDPB6.
" target="_blank">Google Scholar10.1364/OFC.2011.PDPB6 Takara H, Sano A, Kobayashi T, Kubota H, Kawakami H et al. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In Proceedings of 38th European Conference and Exhibition of Optical Communication Th.3.C.1 (Optical Society of America, 2012); https://doi.org/10.1364/ECEOC.2012.Th.3.C.1.
" target="_blank">Google ScholarSano A, Takara H, Kobayashi T, Kawakami H, Kishikawa H et al. 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt Express 21, 16777-16783 (2013).
DOI: 10.1364/OE.21.016777Li M J, Hoover B, Nazarov V N, Butler D L. Multicore fiber for optical interconnect applications. In Proceedings of the 17th Opto-Electronics and Communications Conference 564-565 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276573.
" target="_blank">Google ScholarVan Newkirk A, Antonio-Lopez J E, Salceda-Delgado G, Piracha M U, Amezcua-Correa R et al. Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photonics Technol Lett 27, 1523-1526 (2015).
DOI: 10.1109/LPT.2015.2427733Saitoh K, Matsuo S. Multicore fiber technology. J Lightwave Technol 34, 55-66 (2016).
DOI: 10.1109/JLT.2015.2466444Saridis G M, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surveys Tuts 17, 2136-2156 (2015).
DOI: 10.1109/COMST.2015.2466458Klaus W, Sakaguchi J, Puttnam B J, Awaji Y, Wada N et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technol Lett 24, 1902-1905 (2012).
DOI: 10.1109/LPT.2012.2217490Tottori Y, Kobayashi T, Watanabe M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photonics Technol Lett 24, 1926-1928 (2012).
DOI: 10.1109/LPT.2012.2219305Thomson R R, Bookey H T, Psaila N D, Fender A, Campbell S et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt Express 15, 11691-11697 (2007).
DOI: 10.1364/OE.15.011691Ding Y H, Ye F H, Peucheret C, Ou H Y, Miyamoto Y et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express 23, 3292-3298 (2015).
DOI: 10.1364/OE.23.003292Zhu B, Taunay T F, Yan M F, Fini J M, Fishteyn M et al. Seven-core multicore fiber transmissions for passive optical network. Opt Express 18, 11117-11122 (2010).
DOI: 10.1364/OE.18.011117Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In Proceedings of the 17th Opto-Electronics and Communications Conference 475-476 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276529.
" target="_blank">Google ScholarNoordegraaf D, Skovgaard P M W, Nielsen M D, Bland-Hawthorn J. Efficient multi-mode to single-mode coupling in a photonic lantern. Opt Express 17, 1988-1994 (2009).
DOI: 10.1364/OE.17.001988Li B R, Feng Z H, Tang M, Xu Z L, Fu S N et al. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt Express 23, 10997-11006 (2015).
DOI: 10.1364/OE.23.010997Tange M, Zhao Z Y, Gan L, Wu H, Wang R X et al. Spatial-division multiplexed optical sensing using MCF and FMF. In Proceedings of Advanced Photonics SoM2G.3 (Optical Society of America, 2016); https://doi.org/10.1364/SOF.2016.SoM2G.3.
" target="_blank">Google ScholarMoore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967-2973 (2012).
DOI: 10.1364/OE.20.002967Zhao Z Y, Liu Z Y, Tang M, Fu S N, Wang L et al. Robust in-fiber spatial interferometer using multicore fiber for vibration detection. Opt Express 26, 29629-29637 (2018).
DOI: 10.1364/OE.26.029629Zhao Z Y, Soto M A, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211-25223 (2016).
DOI: 10.1364/OE.24.025211Moore J P. Shape sensing using multi-core fiber. In Proceedings of Optical Fiber Communication Conference Th1C.2 (Optical Society of America, 2015); https://doi.org/10.1364/OFC.2015.Th1C.2.
" target="_blank">Google ScholarNASA. NASA langley's highly accurate position detection and shape sensing with fiber optics: novel method for determining position, shape, and curvature. https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf.
https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf.
" target="_blank">Google ScholarKlute S M, Duncan R G, Fielder R S, Butler G W, Mabe J H et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006); https://doi.org/10.2514/6.2006-624.
" target="_blank">Google ScholarDuncan R. Sensing shape: fiber-Bragg-grating sensor arrays monitor shape at a high resolution. SPIE Newsroom. http://spie.org/x15732.xml.
" target="_blank">Google ScholarSoller B J, Gifford D K, Wolfe M S, Froggatt M E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt Express 13, 666-674 (2005).
DOI: 10.1364/OPEX.13.000666Duncan R G, Froggatt M E, Kreger S T, Seeley R J, Gifford D K et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007).
DOI: 10.1117/12.720914Chan H M, Parker A R, Piazza A, Richards W L. Fiber-optic sensing system: overview, development and deployment in flight at NASA. In Proceedings of Avionics and Vehicle Fiber-Optics and Photonics Conference 71-73 (IEEE, 2015); https://doi.org/10.1109/AVFOP.2015.7356646.
" target="_blank">Google ScholarKreger S T, Gifford D K, Froggatt M E, Soller B J, Wolfe M S. High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swept-wavelength interferometry. In Proceedings of Optical Fiber Sensors ThE42 (Optical Society of America, 2006); https://doi.org/10.1364/OFS.2006.ThE42.
" target="_blank">Google ScholarKreger S T, Gifford D K, Froggatt M E, Sang A K, Duncan R G et al. High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter. Proc SPIE 6530, 65301R (2007).
DOI: 10.1117/12.720913Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl Opt 37, 1735-1740 (1998).
DOI: 10.1364/AO.37.001735Askins C G, Taunay T F, Miller G A, Wright B M, Peele J R et al. Inscription of fiber Bragg gratings in multicore fiber. In Proceedings of Nonlinear Photonics JWA39 (Optical Society of America, 2007); https://doi.org/10.1364/BGPP.2007.JWA39.
" target="_blank">Google ScholarAskins C G, Miller G A, Friebele E J. Bend and twist sensing in a multi-core optical fiber. In Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109-110 (IEEE, 2008); https://doi.org/10.1109/LEOS.2008.4688512.
" target="_blank">Google ScholarAskins C G, Miller G A, Friebele E J. Bend and twist sensing in a multiple-core optical fiber. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OMT3 (Optical Society of America, 2008).
Froggatt M, Klein J, Gifford D. Shape sensing of multiple core optical fiber. In Proceedings of Imaging and Applied Optics AIMB2 (Optical Society of America, 2011); https://doi.org/10.1364/AIO.2011.AIMB2.
" target="_blank">Google ScholarLally E M, Reaves M, Horrell E, Klute S, Froggatt M E. Fiber optic shape sensing for monitoring of flexible structures. Proc SPIE 8345, 83452Y (2012).
DOI: 10.1117/12.917490Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays. Proc SPIE 8938, 89380H (2014).
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214528497Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Multicore optical fiber grating array fabrication for medical sensing applications. Proc SPIE 9317, 93170C (2015).
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215030518Kremp T, Feder K S, Ko W, Westbrook P S. Performance characteristics of continuous multicore fiber optic sensor arrays. Proc SPIE 10058, 100580V (2017).
Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Lightwave Technol 35, 1248-1252 (2017).
DOI: 10.1109/JLT.2017.2661680Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of Optical Fiber Communication Conference W1K.1 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W1K.1.
" target="_blank">Google ScholarZhao Z Y, Soto M A, Tang M, Thévenaz L. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers. In Proceedings of Advanced Photonics SeM4D.4 (Optical Society of America, 2016); https://doi.org/10.1364/SENSORS.2016.SeM4D.4.
" target="_blank">Google ScholarZhao Z Y, Soto M A, Tang M, Thévenaz L. Demonstration of distributed shape sensing based on Brillouin scattering in multi-core fibers. In Proceedings of the 25th Optical Fiber Sensors 1-4 (IEEE, 2017); https://doi.org/10.1117/12.2267486.
" target="_blank">Google ScholarLi W H, Bao X Y, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16, 21616-21625 (2008).
DOI: 10.1364/OE.16.021616Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci Appl 5, e16074 (2016).
DOI: 10.1038/lsa.2016.74Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt Lett 30, 1276-1278 (2005).
DOI: 10.1364/OL.30.001276Taki M, Signorini A, Oton C J, Nannipieri T, Di Pasquale F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt Lett 38, 4162-4165 (2013).
DOI: 10.1364/OL.38.004162Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazão O et al. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt Lett 38, 872-874 (2013).
DOI: 10.1364/OL.38.000872Zhao Z Y, Dang Y L, Tang M, Duan L, Wang M et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt Express 24, 25111-25118 (2016).
DOI: 10.1364/OE.24.025111Li M J, Li S P, Derick J A, Stone J S, Chow B C et al. Dual core optical fiber for distributed Brillouin fiber sensors. In Proceedings of Asia Communications and Photonics Conference AW4I.3 (Optical Society of America, 2014); https://doi.org/10.1364/ACPC.2014.AW4I.3.
" target="_blank">Google ScholarMizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep 5, 11388 (2015).
DOI: 10.1038/srep11388Zhao Z Y, Dang Y L, Tang M, Li B R, Gan L et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt Lett 42, 171-174 (2017).
DOI: 10.1364/OL.42.000171Zhao Z Y, Tang M, Fu S N, Tong W J, Liu D M. Distributed and discriminative Brillouin optical fiber sensing based on heterogeneous multicore fiber. In Proceedings of Optical Fiber Communication Conference W3H.5 (Optical Society of America, 2017); https://doi.org/10.1364/OFC.2017.W3H.5.
" target="_blank">Google ScholarZaghloul M A S, Wang M H, Milione G, Li M J, Li S P et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber. Sensors 18, 1176 (2018).
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-18-01176Muanenda Y, Oton C J, Faralli S, Nannipieri T, Signorini A et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection. Opt Lett 41, 587-590 (2016).
DOI: 10.1364/OL.41.000587Zhao Z Y, Tang M, Wang L, Fu S N, Tong W J et al. Enabling simultaneous DAS and DTS measurement through multicore fiber based space-division multiplexing. In Proceedings of Optical Fiber Communication Conference W2A.7 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W2A.7.
" target="_blank">Google ScholarZhao Z Y, Dang Y L, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Lightwave Technol 36, 5707-5713 (2018).
DOI: 10.1109/JLT.2018.2878559Zhu T, He Q, Xiao X H, Bao X Y. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt Express 21, 2953-2963 (2013).
DOI: 10.1364/OE.21.002953Zhao Z Y, Tang M, Wang L, Guo N, Tam H Y et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Lightwave Technol 36, 5764-5772 (2018).
DOI: 10.1109/JLT.2018.2878450Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightwave Technol 27, 1142-1146 (2009).
DOI: 10.1109/JLT.2008.928957Lu X, Soto M A, Thévenaz L. MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering. Proc SPIE 9157, 91573R (2014).
http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214835722Pastor-Graells J, Martins H F, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121-13133 (2016).
DOI: 10.1364/OE.24.013121Dang Y L, Zhao Z Y, Tang M, Zhao C, Gan L et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt Express 25, 20183-20193 (2017).
DOI: 10.1364/OE.25.020183Sun X G, Li J, Burgess D T, Hines M, Zhu B. A multicore optical fiber for distributed sensing. Proc SPIE 9098, 90980W (2014).
Yangtze Optical Fibre and Cable Joint Stock Limited Company (YOFC). http://en.yofc.com/.
" target="_blank">Google ScholarChiral Photonics, Inc. https://www.chiralphotonics.com/.
" target="_blank">Google ScholarOptoscribe. http://www.optoscribe.com/.
" target="_blank">Google ScholarShen L, Gan L, Dong Z R, Li B R, Liu D M et al. End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photonics J 9, 1-8 (2017).
DOI: 10.1109/jphot.2017.2678165Diamandi H H, London Y, Zadok A. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica 4, 289-297 (2017).
DOI: 10.1364/OPTICA.4.000289Bashan G, Diamandi H H, London Y, Preter E, Zadok A. Optomechanical time-domain reflectometry. Nat Commun 9, 2991 (2018).
DOI: 10.1038/s41467-018-05404-0Chow D M, Yang Z S, Soto M A, Thévenaz L. Distributed forward Brillouin sensor based on local light phase recovery. Nat Commun 9, 2990 (2018).
DOI: 10.1038/s41467-018-05410-2View full references list -
Author Information
-
Zhiyong Zhao On this SiteOn Google Scholar
- Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
-
Corresponding author: Ming Tang, tangming@mail.hust.edu.cn On this SiteOn Google Scholar
M Tang, E-mail: tangming@mail.hust.edu.cn- National Engineering Laboratory of Next Generation Internet Access Networks, School of Optical and Electronic Infor-mation, Huazhong University of Science and Technology, Wuhan 430074, China
-
Chao Lu On this SiteOn Google Scholar
- Photonics Research Centre, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
-
-
Copyright
Open Access. © The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. -
About this Article
Cite this Article
Zhiyong Zhao, Ming Tang, Chao Lu. Distributed multicore fiber sensors. Opto-Electronic Advances 3, 190024 (2020). DOI: 10.29026/oea.2020.190024Zhiyong Zhao, Ming Tang, Chao Lu. Distributed multicore fiber sensors. Opto-Electronic Advances 3, 190024 (2020). DOI: 10.29026/oea.2020.190024Download CitationArticle History
- Received Date June 22, 2019
- Accepted Date August 06, 2019
- Available Online February 21, 2020
- Published Date February 21, 2020
-
Related Articles
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
-
View in article Downloads
Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photon 7, 354-362 (2013). DOI: 10.1038/nphoton.2013.94 |
Winzer P J. Making spatial multiplexing a reality. Nat Photonics 8, 345-348 (2014). DOI: 10.1038/nphoton.2014.58 |
Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865-870 (2014). DOI: 10.1038/nphoton.2014.243 |
Mizuno T, Takara H, Sano A, Miyamoto Y. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J Lightwave Technol 34, 582-592 (2016). DOI: 10.1109/JLT.2015.2482901 |
Ryf R, Sierra A, Essiambre R J, Gnauck A H, Randel S et al. Coherent 1200-km 6x6 MIMO mode-multiplexed transmission over 3-core microstructured fiber. In Proceedings of 37th European Conference and Exhibition on Optical Communication 1-3 (IEEE, 2011). |
Gonda T, Imamura K, Sugizaki R, Kawaguchi Y, Tsuritani T. 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system. In Proceedings of 42nd European Conference on Optical Communication 1-3 (IEEE, 2016). |
Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference PDPB6 (Optical Society of America, 2011); https://doi.org/10.1364/OFC.2011.PDPB6. https://doi.org/10.1364/OFC.2011.PDPB6. |
Takara H, Sano A, Kobayashi T, Kubota H, Kawakami H et al. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In Proceedings of 38th European Conference and Exhibition of Optical Communication Th.3.C.1 (Optical Society of America, 2012); https://doi.org/10.1364/ECEOC.2012.Th.3.C.1. " target="_blank">Google Scholar |
Sano A, Takara H, Kobayashi T, Kawakami H, Kishikawa H et al. 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt Express 21, 16777-16783 (2013). DOI: 10.1364/OE.21.016777 |
Li M J, Hoover B, Nazarov V N, Butler D L. Multicore fiber for optical interconnect applications. In Proceedings of the 17th Opto-Electronics and Communications Conference 564-565 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276573. " target="_blank">Google Scholar |
Van Newkirk A, Antonio-Lopez J E, Salceda-Delgado G, Piracha M U, Amezcua-Correa R et al. Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photonics Technol Lett 27, 1523-1526 (2015). DOI: 10.1109/LPT.2015.2427733 |
Saitoh K, Matsuo S. Multicore fiber technology. J Lightwave Technol 34, 55-66 (2016). DOI: 10.1109/JLT.2015.2466444 |
Saridis G M, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surveys Tuts 17, 2136-2156 (2015). DOI: 10.1109/COMST.2015.2466458 |
Klaus W, Sakaguchi J, Puttnam B J, Awaji Y, Wada N et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technol Lett 24, 1902-1905 (2012). DOI: 10.1109/LPT.2012.2217490 |
Tottori Y, Kobayashi T, Watanabe M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photonics Technol Lett 24, 1926-1928 (2012). DOI: 10.1109/LPT.2012.2219305 |
Thomson R R, Bookey H T, Psaila N D, Fender A, Campbell S et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt Express 15, 11691-11697 (2007). DOI: 10.1364/OE.15.011691 |
Ding Y H, Ye F H, Peucheret C, Ou H Y, Miyamoto Y et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express 23, 3292-3298 (2015). DOI: 10.1364/OE.23.003292 |
Zhu B, Taunay T F, Yan M F, Fini J M, Fishteyn M et al. Seven-core multicore fiber transmissions for passive optical network. Opt Express 18, 11117-11122 (2010). DOI: 10.1364/OE.18.011117 |
Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In Proceedings of the 17th Opto-Electronics and Communications Conference 475-476 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276529. " target="_blank">Google Scholar |
Noordegraaf D, Skovgaard P M W, Nielsen M D, Bland-Hawthorn J. Efficient multi-mode to single-mode coupling in a photonic lantern. Opt Express 17, 1988-1994 (2009). DOI: 10.1364/OE.17.001988 |
Li B R, Feng Z H, Tang M, Xu Z L, Fu S N et al. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt Express 23, 10997-11006 (2015). DOI: 10.1364/OE.23.010997 |
Tange M, Zhao Z Y, Gan L, Wu H, Wang R X et al. Spatial-division multiplexed optical sensing using MCF and FMF. In Proceedings of Advanced Photonics SoM2G.3 (Optical Society of America, 2016); https://doi.org/10.1364/SOF.2016.SoM2G.3. " target="_blank">Google Scholar |
Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967-2973 (2012). DOI: 10.1364/OE.20.002967 |
Zhao Z Y, Liu Z Y, Tang M, Fu S N, Wang L et al. Robust in-fiber spatial interferometer using multicore fiber for vibration detection. Opt Express 26, 29629-29637 (2018). DOI: 10.1364/OE.26.029629 |
Zhao Z Y, Soto M A, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211-25223 (2016). DOI: 10.1364/OE.24.025211 |
Moore J P. Shape sensing using multi-core fiber. In Proceedings of Optical Fiber Communication Conference Th1C.2 (Optical Society of America, 2015); https://doi.org/10.1364/OFC.2015.Th1C.2. " target="_blank">Google Scholar |
NASA. NASA langley's highly accurate position detection and shape sensing with fiber optics: novel method for determining position, shape, and curvature. https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf. https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf. " target="_blank">Google Scholar |
Klute S M, Duncan R G, Fielder R S, Butler G W, Mabe J H et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006); https://doi.org/10.2514/6.2006-624. " target="_blank">Google Scholar |
Duncan R. Sensing shape: fiber-Bragg-grating sensor arrays monitor shape at a high resolution. SPIE Newsroom. http://spie.org/x15732.xml. " target="_blank">Google Scholar |
Soller B J, Gifford D K, Wolfe M S, Froggatt M E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt Express 13, 666-674 (2005). DOI: 10.1364/OPEX.13.000666 |
Duncan R G, Froggatt M E, Kreger S T, Seeley R J, Gifford D K et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007). DOI: 10.1117/12.720914 |
Chan H M, Parker A R, Piazza A, Richards W L. Fiber-optic sensing system: overview, development and deployment in flight at NASA. In Proceedings of Avionics and Vehicle Fiber-Optics and Photonics Conference 71-73 (IEEE, 2015); https://doi.org/10.1109/AVFOP.2015.7356646. " target="_blank">Google Scholar |
Kreger S T, Gifford D K, Froggatt M E, Soller B J, Wolfe M S. High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swept-wavelength interferometry. In Proceedings of Optical Fiber Sensors ThE42 (Optical Society of America, 2006); https://doi.org/10.1364/OFS.2006.ThE42. " target="_blank">Google Scholar |
Kreger S T, Gifford D K, Froggatt M E, Sang A K, Duncan R G et al. High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter. Proc SPIE 6530, 65301R (2007). DOI: 10.1117/12.720913 |
Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl Opt 37, 1735-1740 (1998). DOI: 10.1364/AO.37.001735 |
Askins C G, Taunay T F, Miller G A, Wright B M, Peele J R et al. Inscription of fiber Bragg gratings in multicore fiber. In Proceedings of Nonlinear Photonics JWA39 (Optical Society of America, 2007); https://doi.org/10.1364/BGPP.2007.JWA39. " target="_blank">Google Scholar |
Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multi-core optical fiber. In Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109-110 (IEEE, 2008); https://doi.org/10.1109/LEOS.2008.4688512. " target="_blank">Google Scholar |
Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multiple-core optical fiber. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OMT3 (Optical Society of America, 2008). |
Froggatt M, Klein J, Gifford D. Shape sensing of multiple core optical fiber. In Proceedings of Imaging and Applied Optics AIMB2 (Optical Society of America, 2011); https://doi.org/10.1364/AIO.2011.AIMB2. " target="_blank">Google Scholar |
Lally E M, Reaves M, Horrell E, Klute S, Froggatt M E. Fiber optic shape sensing for monitoring of flexible structures. Proc SPIE 8345, 83452Y (2012). DOI: 10.1117/12.917490 |
Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays. Proc SPIE 8938, 89380H (2014). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214528497 |
Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Multicore optical fiber grating array fabrication for medical sensing applications. Proc SPIE 9317, 93170C (2015). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215030518 |
Kremp T, Feder K S, Ko W, Westbrook P S. Performance characteristics of continuous multicore fiber optic sensor arrays. Proc SPIE 10058, 100580V (2017). |
Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Lightwave Technol 35, 1248-1252 (2017). DOI: 10.1109/JLT.2017.2661680 |
Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of Optical Fiber Communication Conference W1K.1 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W1K.1. " target="_blank">Google Scholar |
Zhao Z Y, Soto M A, Tang M, Thévenaz L. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers. In Proceedings of Advanced Photonics SeM4D.4 (Optical Society of America, 2016); https://doi.org/10.1364/SENSORS.2016.SeM4D.4. " target="_blank">Google Scholar |
Zhao Z Y, Soto M A, Tang M, Thévenaz L. Demonstration of distributed shape sensing based on Brillouin scattering in multi-core fibers. In Proceedings of the 25th Optical Fiber Sensors 1-4 (IEEE, 2017); https://doi.org/10.1117/12.2267486. " target="_blank">Google Scholar |
Li W H, Bao X Y, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16, 21616-21625 (2008). DOI: 10.1364/OE.16.021616 |
Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci Appl 5, e16074 (2016). DOI: 10.1038/lsa.2016.74 |
Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt Lett 30, 1276-1278 (2005). DOI: 10.1364/OL.30.001276 |
Taki M, Signorini A, Oton C J, Nannipieri T, Di Pasquale F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt Lett 38, 4162-4165 (2013). DOI: 10.1364/OL.38.004162 |
Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazão O et al. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt Lett 38, 872-874 (2013). DOI: 10.1364/OL.38.000872 |
Zhao Z Y, Dang Y L, Tang M, Duan L, Wang M et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt Express 24, 25111-25118 (2016). DOI: 10.1364/OE.24.025111 |
Li M J, Li S P, Derick J A, Stone J S, Chow B C et al. Dual core optical fiber for distributed Brillouin fiber sensors. In Proceedings of Asia Communications and Photonics Conference AW4I.3 (Optical Society of America, 2014); https://doi.org/10.1364/ACPC.2014.AW4I.3. " target="_blank">Google Scholar |
Mizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep 5, 11388 (2015). DOI: 10.1038/srep11388 |
Zhao Z Y, Dang Y L, Tang M, Li B R, Gan L et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt Lett 42, 171-174 (2017). DOI: 10.1364/OL.42.000171 |
Zhao Z Y, Tang M, Fu S N, Tong W J, Liu D M. Distributed and discriminative Brillouin optical fiber sensing based on heterogeneous multicore fiber. In Proceedings of Optical Fiber Communication Conference W3H.5 (Optical Society of America, 2017); https://doi.org/10.1364/OFC.2017.W3H.5. " target="_blank">Google Scholar |
Zaghloul M A S, Wang M H, Milione G, Li M J, Li S P et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber. Sensors 18, 1176 (2018). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-18-01176 |
Muanenda Y, Oton C J, Faralli S, Nannipieri T, Signorini A et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection. Opt Lett 41, 587-590 (2016). DOI: 10.1364/OL.41.000587 |
Zhao Z Y, Tang M, Wang L, Fu S N, Tong W J et al. Enabling simultaneous DAS and DTS measurement through multicore fiber based space-division multiplexing. In Proceedings of Optical Fiber Communication Conference W2A.7 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W2A.7. " target="_blank">Google Scholar |
Zhao Z Y, Dang Y L, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Lightwave Technol 36, 5707-5713 (2018). DOI: 10.1109/JLT.2018.2878559 |
Zhu T, He Q, Xiao X H, Bao X Y. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt Express 21, 2953-2963 (2013). DOI: 10.1364/OE.21.002953 |
Zhao Z Y, Tang M, Wang L, Guo N, Tam H Y et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Lightwave Technol 36, 5764-5772 (2018). DOI: 10.1109/JLT.2018.2878450 |
Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightwave Technol 27, 1142-1146 (2009). DOI: 10.1109/JLT.2008.928957 |
Lu X, Soto M A, Thévenaz L. MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering. Proc SPIE 9157, 91573R (2014). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214835722 |
Pastor-Graells J, Martins H F, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121-13133 (2016). DOI: 10.1364/OE.24.013121 |
Dang Y L, Zhao Z Y, Tang M, Zhao C, Gan L et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt Express 25, 20183-20193 (2017). DOI: 10.1364/OE.25.020183 |
Sun X G, Li J, Burgess D T, Hines M, Zhu B. A multicore optical fiber for distributed sensing. Proc SPIE 9098, 90980W (2014). |
Yangtze Optical Fibre and Cable Joint Stock Limited Company (YOFC). http://en.yofc.com/. " target="_blank">Google Scholar |
Chiral Photonics, Inc. https://www.chiralphotonics.com/. " target="_blank">Google Scholar |
Optoscribe. http://www.optoscribe.com/. " target="_blank">Google Scholar |
Shen L, Gan L, Dong Z R, Li B R, Liu D M et al. End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photonics J 9, 1-8 (2017). DOI: 10.1109/jphot.2017.2678165 |
Diamandi H H, London Y, Zadok A. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica 4, 289-297 (2017). DOI: 10.1364/OPTICA.4.000289 |
Bashan G, Diamandi H H, London Y, Preter E, Zadok A. Optomechanical time-domain reflectometry. Nat Commun 9, 2991 (2018). DOI: 10.1038/s41467-018-05404-0 |
Chow D M, Yang Z S, Soto M A, Thévenaz L. Distributed forward Brillouin sensor based on local light phase recovery. Nat Commun 9, 2990 (2018). DOI: 10.1038/s41467-018-05410-2 |
Links
Related Articles
-
Earth and Planetary Physics, DOI: 10.26464/epp2023026
-
Earth and Planetary Physics, DOI: 10.26464/epp2023026