Distributed multicore fiber sensors
  • Abstract

    Multicore fiber (MCF) which contains more than one core in a single fiber cladding has attracted ever increasing attention for application in optical sensing systems owing to its unique capability of independent light transmission in multiple spatial channels. Different from the situation in standard single mode fiber (SMF), the fiber bending gives rise to tangential strain in off-center cores, and this unique feature has been employed for directional bending and shape sensing, where strain measurement is achieved by using either fiber Bragg gratings (FBGs), optical frequency-domain reflectometry (OFDR) or Brillouin distributed sensing technique. On the other hand, the parallel spatial cores enable space-division multiplexed (SDM) system configuration that allows for the multiplexing of multiple distributed sensing techniques. As a result, multi-parameter sensing or performance enhanced sensing can be achieved by using MCF. In this paper, we review the research progress in MCF based distributed fiber sensors. Brief introductions of MCF and the multiplexing/de-multiplexing methods are presented. The bending sensitivity of off-center cores is analyzed. Curvature and shape sensing, as well as various SDM distributed sensing using MCF are summarized, and the working principles of diverse MCF sensors are discussed. Finally, we present the challenges and prospects of MCF for distributed sensing applications.

    Keywords

  • loading
  • References

    Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photon 7, 354-362 (2013).

    DOI: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    Winzer P J. Making spatial multiplexing a reality. Nat Photonics 8, 345-348 (2014).

    DOI: 10.1038/nphoton.2014.58

    CrossRef Google Scholar

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865-870 (2014).

    DOI: 10.1038/nphoton.2014.243

    CrossRef Google Scholar

    Mizuno T, Takara H, Sano A, Miyamoto Y. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J Lightwave Technol 34, 582-592 (2016).

    DOI: 10.1109/JLT.2015.2482901

    CrossRef Google Scholar

    Ryf R, Sierra A, Essiambre R J, Gnauck A H, Randel S et al. Coherent 1200-km 6x6 MIMO mode-multiplexed transmission over 3-core microstructured fiber. In Proceedings of 37th European Conference and Exhibition on Optical Communication 1-3 (IEEE, 2011).

    10.1364/ECOC.2011.Th.13.C.1

    Google Scholar

    Gonda T, Imamura K, Sugizaki R, Kawaguchi Y, Tsuritani T. 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system. In Proceedings of 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).

    Google Scholar

    View full references list
  • Author Information

  • Copyright

    Open Access. © The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
  • About this Article

    DOI: 10.29026/oea.2020.190024
    Cite this Article
    Zhiyong Zhao, Ming Tang, Chao Lu. Distributed multicore fiber sensors. Opto-Electronic Advances 3, 190024 (2020). DOI: 10.29026/oea.2020.190024
    Download Citation
    Article History
    • Received Date June 22, 2019
    • Accepted Date August 06, 2019
    • Available Online February 21, 2020
    • Published Date February 21, 2020
    Article Metrics
    Article Views(19823) PDF Downloads(4084) Article has an altmetric score of 9
    Share:
  • Related Articles

Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nat Photon 7, 354-362 (2013).

DOI: 10.1038/nphoton.2013.94

CrossRef Google Scholar

Winzer P J. Making spatial multiplexing a reality. Nat Photonics 8, 345-348 (2014).

DOI: 10.1038/nphoton.2014.58

CrossRef Google Scholar

Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photonics 8, 865-870 (2014).

DOI: 10.1038/nphoton.2014.243

CrossRef Google Scholar

Mizuno T, Takara H, Sano A, Miyamoto Y. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber. J Lightwave Technol 34, 582-592 (2016).

DOI: 10.1109/JLT.2015.2482901

CrossRef Google Scholar

Ryf R, Sierra A, Essiambre R J, Gnauck A H, Randel S et al. Coherent 1200-km 6x6 MIMO mode-multiplexed transmission over 3-core microstructured fiber. In Proceedings of 37th European Conference and Exhibition on Optical Communication 1-3 (IEEE, 2011).

10.1364/ECOC.2011.Th.13.C.1

Google Scholar

Gonda T, Imamura K, Sugizaki R, Kawaguchi Y, Tsuritani T. 125 μm 5-core fibre with heterogeneous design suitable for migration from single-core system to multi-core system. In Proceedings of 42nd European Conference on Optical Communication 1-3 (IEEE, 2016).

Google Scholar

Sakaguchi J, Awaji Y, Wada N, Kanno A, Kawanishi T et al. 109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber. In Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference PDPB6 (Optical Society of America, 2011); https://doi.org/10.1364/OFC.2011.PDPB6.

10.1364/OFC.2011.PDPB6

https://doi.org/10.1364/OFC.2011.PDPB6.

10.1364/OFC.2011.PDPB6

" target="_blank">Google Scholar

Takara H, Sano A, Kobayashi T, Kubota H, Kawakami H et al. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. In Proceedings of 38th European Conference and Exhibition of Optical Communication Th.3.C.1 (Optical Society of America, 2012); https://doi.org/10.1364/ECEOC.2012.Th.3.C.1.

https://doi.org/10.1364/ECEOC.2012.Th.3.C.1.

" target="_blank">Google Scholar

Sano A, Takara H, Kobayashi T, Kawakami H, Kishikawa H et al. 409-Tb/s + 409-Tb/s crosstalk suppressed bidirectional MCF transmission over 450 km using propagation-direction interleaving. Opt Express 21, 16777-16783 (2013).

DOI: 10.1364/OE.21.016777

CrossRef Google Scholar

Li M J, Hoover B, Nazarov V N, Butler D L. Multicore fiber for optical interconnect applications. In Proceedings of the 17th Opto-Electronics and Communications Conference 564-565 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276573.

https://doi.org/10.1109/OECC.2012.6276573.

" target="_blank">Google Scholar

Van Newkirk A, Antonio-Lopez J E, Salceda-Delgado G, Piracha M U, Amezcua-Correa R et al. Multicore fiber sensors for simultaneous measurement of force and temperature. IEEE Photonics Technol Lett 27, 1523-1526 (2015).

DOI: 10.1109/LPT.2015.2427733

CrossRef Google Scholar

Saitoh K, Matsuo S. Multicore fiber technology. J Lightwave Technol 34, 55-66 (2016).

DOI: 10.1109/JLT.2015.2466444

CrossRef Google Scholar

Saridis G M, Alexandropoulos D, Zervas G, Simeonidou D. Survey and evaluation of space division multiplexing: from technologies to optical networks. IEEE Commun Surveys Tuts 17, 2136-2156 (2015).

DOI: 10.1109/COMST.2015.2466458

CrossRef Google Scholar

Klaus W, Sakaguchi J, Puttnam B J, Awaji Y, Wada N et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technol Lett 24, 1902-1905 (2012).

DOI: 10.1109/LPT.2012.2217490

CrossRef Google Scholar

Tottori Y, Kobayashi T, Watanabe M. Low loss optical connection module for seven-core multicore fiber and seven single-mode fibers. IEEE Photonics Technol Lett 24, 1926-1928 (2012).

DOI: 10.1109/LPT.2012.2219305

CrossRef Google Scholar

Thomson R R, Bookey H T, Psaila N D, Fender A, Campbell S et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications. Opt Express 15, 11691-11697 (2007).

DOI: 10.1364/OE.15.011691

CrossRef Google Scholar

Ding Y H, Ye F H, Peucheret C, Ou H Y, Miyamoto Y et al. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt Express 23, 3292-3298 (2015).

DOI: 10.1364/OE.23.003292

CrossRef Google Scholar

Zhu B, Taunay T F, Yan M F, Fini J M, Fishteyn M et al. Seven-core multicore fiber transmissions for passive optical network. Opt Express 18, 11117-11122 (2010).

DOI: 10.1364/OE.18.011117

CrossRef Google Scholar

Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In Proceedings of the 17th Opto-Electronics and Communications Conference 475-476 (IEEE, 2012); https://doi.org/10.1109/OECC.2012.6276529.

https://doi.org/10.1109/OECC.2012.6276529.

" target="_blank">Google Scholar

Noordegraaf D, Skovgaard P M W, Nielsen M D, Bland-Hawthorn J. Efficient multi-mode to single-mode coupling in a photonic lantern. Opt Express 17, 1988-1994 (2009).

DOI: 10.1364/OE.17.001988

CrossRef Google Scholar

Li B R, Feng Z H, Tang M, Xu Z L, Fu S N et al. Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats. Opt Express 23, 10997-11006 (2015).

DOI: 10.1364/OE.23.010997

CrossRef Google Scholar

Tange M, Zhao Z Y, Gan L, Wu H, Wang R X et al. Spatial-division multiplexed optical sensing using MCF and FMF. In Proceedings of Advanced Photonics SoM2G.3 (Optical Society of America, 2016); https://doi.org/10.1364/SOF.2016.SoM2G.3.

https://doi.org/10.1364/SOF.2016.SoM2G.3.

" target="_blank">Google Scholar

Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967-2973 (2012).

DOI: 10.1364/OE.20.002967

CrossRef Google Scholar

Zhao Z Y, Liu Z Y, Tang M, Fu S N, Wang L et al. Robust in-fiber spatial interferometer using multicore fiber for vibration detection. Opt Express 26, 29629-29637 (2018).

DOI: 10.1364/OE.26.029629

CrossRef Google Scholar

Zhao Z Y, Soto M A, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211-25223 (2016).

DOI: 10.1364/OE.24.025211

CrossRef Google Scholar

Moore J P. Shape sensing using multi-core fiber. In Proceedings of Optical Fiber Communication Conference Th1C.2 (Optical Society of America, 2015); https://doi.org/10.1364/OFC.2015.Th1C.2.

https://doi.org/10.1364/OFC.2015.Th1C.2.

" target="_blank">Google Scholar

NASA. NASA langley's highly accurate position detection and shape sensing with fiber optics: novel method for determining position, shape, and curvature. https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf.

https://technology.nasa.gov/media/Fiber_Optic_Shape_Sensing.pdf.

" target="_blank">Google Scholar

Klute S M, Duncan R G, Fielder R S, Butler G W, Mabe J H et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006); https://doi.org/10.2514/6.2006-624.

https://doi.org/10.2514/6.2006-624.

" target="_blank">Google Scholar

Duncan R. Sensing shape: fiber-Bragg-grating sensor arrays monitor shape at a high resolution. SPIE Newsroom. http://spie.org/x15732.xml.

http://spie.org/x15732.xml.

" target="_blank">Google Scholar

Soller B J, Gifford D K, Wolfe M S, Froggatt M E. High resolution optical frequency domain reflectometry for characterization of components and assemblies. Opt Express 13, 666-674 (2005).

DOI: 10.1364/OPEX.13.000666

CrossRef Google Scholar

Duncan R G, Froggatt M E, Kreger S T, Seeley R J, Gifford D K et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007).

DOI: 10.1117/12.720914

CrossRef Google Scholar

Chan H M, Parker A R, Piazza A, Richards W L. Fiber-optic sensing system: overview, development and deployment in flight at NASA. In Proceedings of Avionics and Vehicle Fiber-Optics and Photonics Conference 71-73 (IEEE, 2015); https://doi.org/10.1109/AVFOP.2015.7356646.

https://doi.org/10.1109/AVFOP.2015.7356646.

" target="_blank">Google Scholar

Kreger S T, Gifford D K, Froggatt M E, Soller B J, Wolfe M S. High resolution distributed strain or temperature measurements in single-and multi-mode fiber using swept-wavelength interferometry. In Proceedings of Optical Fiber Sensors ThE42 (Optical Society of America, 2006); https://doi.org/10.1364/OFS.2006.ThE42.

https://doi.org/10.1364/OFS.2006.ThE42.

" target="_blank">Google Scholar

Kreger S T, Gifford D K, Froggatt M E, Sang A K, Duncan R G et al. High-resolution extended distance distributed fiber-optic sensing using Rayleigh backscatter. Proc SPIE 6530, 65301R (2007).

DOI: 10.1117/12.720913

CrossRef Google Scholar

Froggatt M, Moore J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl Opt 37, 1735-1740 (1998).

DOI: 10.1364/AO.37.001735

CrossRef Google Scholar

Askins C G, Taunay T F, Miller G A, Wright B M, Peele J R et al. Inscription of fiber Bragg gratings in multicore fiber. In Proceedings of Nonlinear Photonics JWA39 (Optical Society of America, 2007); https://doi.org/10.1364/BGPP.2007.JWA39.

https://doi.org/10.1364/BGPP.2007.JWA39.

" target="_blank">Google Scholar

Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multi-core optical fiber. In Proceedings of the 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109-110 (IEEE, 2008); https://doi.org/10.1109/LEOS.2008.4688512.

https://doi.org/10.1109/LEOS.2008.4688512.

" target="_blank">Google Scholar

Askins C G, Miller G A, Friebele E J. Bend and twist sensing in a multiple-core optical fiber. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OMT3 (Optical Society of America, 2008).

Google Scholar

Froggatt M, Klein J, Gifford D. Shape sensing of multiple core optical fiber. In Proceedings of Imaging and Applied Optics AIMB2 (Optical Society of America, 2011); https://doi.org/10.1364/AIO.2011.AIMB2.

https://doi.org/10.1364/AIO.2011.AIMB2.

" target="_blank">Google Scholar

Lally E M, Reaves M, Horrell E, Klute S, Froggatt M E. Fiber optic shape sensing for monitoring of flexible structures. Proc SPIE 8345, 83452Y (2012).

DOI: 10.1117/12.917490

CrossRef Google Scholar

Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays. Proc SPIE 8938, 89380H (2014).

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214528497

Google Scholar

Westbrook P S, Feder K S, Kremp T, Taunay T F, Monberg E et al. Multicore optical fiber grating array fabrication for medical sensing applications. Proc SPIE 9317, 93170C (2015).

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0215030518

Google Scholar

Kremp T, Feder K S, Ko W, Westbrook P S. Performance characteristics of continuous multicore fiber optic sensor arrays. Proc SPIE 10058, 100580V (2017).

Google Scholar

Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Lightwave Technol 35, 1248-1252 (2017).

DOI: 10.1109/JLT.2017.2661680

CrossRef Google Scholar

Westbrook P S, Kremp T, Feder K S, Ko W, Monberg E M et al. Improving distributed sensing with continuous gratings in single and multi-core fibers. In Proceedings of Optical Fiber Communication Conference W1K.1 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W1K.1.

https://doi.org/10.1364/OFC.2018.W1K.1.

" target="_blank">Google Scholar

Zhao Z Y, Soto M A, Tang M, Thévenaz L. Curvature and shape distributed sensing using Brillouin scattering in multi-core fibers. In Proceedings of Advanced Photonics SeM4D.4 (Optical Society of America, 2016); https://doi.org/10.1364/SENSORS.2016.SeM4D.4.

https://doi.org/10.1364/SENSORS.2016.SeM4D.4.

" target="_blank">Google Scholar

Zhao Z Y, Soto M A, Tang M, Thévenaz L. Demonstration of distributed shape sensing based on Brillouin scattering in multi-core fibers. In Proceedings of the 25th Optical Fiber Sensors 1-4 (IEEE, 2017); https://doi.org/10.1117/12.2267486.

https://doi.org/10.1117/12.2267486.

" target="_blank">Google Scholar

Li W H, Bao X Y, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Opt Express 16, 21616-21625 (2008).

DOI: 10.1364/OE.16.021616

CrossRef Google Scholar

Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration. Light Sci Appl 5, e16074 (2016).

DOI: 10.1038/lsa.2016.74

CrossRef Google Scholar

Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering. Opt Lett 30, 1276-1278 (2005).

DOI: 10.1364/OL.30.001276

CrossRef Google Scholar

Taki M, Signorini A, Oton C J, Nannipieri T, Di Pasquale F. Hybrid Raman/Brillouin-optical-time-domain-analysis-distributed optical fiber sensors based on cyclic pulse coding. Opt Lett 38, 4162-4165 (2013).

DOI: 10.1364/OL.38.004162

CrossRef Google Scholar

Martins H F, Martin-Lopez S, Corredera P, Salgado P, Frazão O et al. Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry. Opt Lett 38, 872-874 (2013).

DOI: 10.1364/OL.38.000872

CrossRef Google Scholar

Zhao Z Y, Dang Y L, Tang M, Duan L, Wang M et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber. Opt Express 24, 25111-25118 (2016).

DOI: 10.1364/OE.24.025111

CrossRef Google Scholar

Li M J, Li S P, Derick J A, Stone J S, Chow B C et al. Dual core optical fiber for distributed Brillouin fiber sensors. In Proceedings of Asia Communications and Photonics Conference AW4I.3 (Optical Society of America, 2014); https://doi.org/10.1364/ACPC.2014.AW4I.3.

https://doi.org/10.1364/ACPC.2014.AW4I.3.

" target="_blank">Google Scholar

Mizuno Y, Hayashi N, Tanaka H, Wada Y, Nakamura K. Brillouin scattering in multi-core optical fibers for sensing applications. Sci Rep 5, 11388 (2015).

DOI: 10.1038/srep11388

CrossRef Google Scholar

Zhao Z Y, Dang Y L, Tang M, Li B R, Gan L et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber. Opt Lett 42, 171-174 (2017).

DOI: 10.1364/OL.42.000171

CrossRef Google Scholar

Zhao Z Y, Tang M, Fu S N, Tong W J, Liu D M. Distributed and discriminative Brillouin optical fiber sensing based on heterogeneous multicore fiber. In Proceedings of Optical Fiber Communication Conference W3H.5 (Optical Society of America, 2017); https://doi.org/10.1364/OFC.2017.W3H.5.

https://doi.org/10.1364/OFC.2017.W3H.5.

" target="_blank">Google Scholar

Zaghloul M A S, Wang M H, Milione G, Li M J, Li S P et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber. Sensors 18, 1176 (2018).

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sensors-18-01176

Google Scholar

Muanenda Y, Oton C J, Faralli S, Nannipieri T, Signorini A et al. Hybrid distributed acoustic and temperature sensor using a commercial off-the-shelf DFB laser and direct detection. Opt Lett 41, 587-590 (2016).

DOI: 10.1364/OL.41.000587

CrossRef Google Scholar

Zhao Z Y, Tang M, Wang L, Fu S N, Tong W J et al. Enabling simultaneous DAS and DTS measurement through multicore fiber based space-division multiplexing. In Proceedings of Optical Fiber Communication Conference W2A.7 (Optical Society of America, 2018); https://doi.org/10.1364/OFC.2018.W2A.7.

https://doi.org/10.1364/OFC.2018.W2A.7.

" target="_blank">Google Scholar

Zhao Z Y, Dang Y L, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Lightwave Technol 36, 5707-5713 (2018).

DOI: 10.1109/JLT.2018.2878559

CrossRef Google Scholar

Zhu T, He Q, Xiao X H, Bao X Y. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt Express 21, 2953-2963 (2013).

DOI: 10.1364/OE.21.002953

CrossRef Google Scholar

Zhao Z Y, Tang M, Wang L, Guo N, Tam H Y et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Lightwave Technol 36, 5764-5772 (2018).

DOI: 10.1109/JLT.2018.2878450

CrossRef Google Scholar

Koyamada Y, Imahama M, Kubota K, Hogari K. Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR. J Lightwave Technol 27, 1142-1146 (2009).

DOI: 10.1109/JLT.2008.928957

CrossRef Google Scholar

Lu X, Soto M A, Thévenaz L. MilliKelvin resolution in cryogenic temperature distributed fibre sensing based on coherent Rayleigh scattering. Proc SPIE 9157, 91573R (2014).

http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0214835722

Google Scholar

Pastor-Graells J, Martins H F, Garcia-Ruiz A, Martin-Lopez S, Gonzalez-Herraez M. Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses. Opt Express 24, 13121-13133 (2016).

DOI: 10.1364/OE.24.013121

CrossRef Google Scholar

Dang Y L, Zhao Z Y, Tang M, Zhao C, Gan L et al. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber. Opt Express 25, 20183-20193 (2017).

DOI: 10.1364/OE.25.020183

CrossRef Google Scholar

Sun X G, Li J, Burgess D T, Hines M, Zhu B. A multicore optical fiber for distributed sensing. Proc SPIE 9098, 90980W (2014).

Google Scholar

Yangtze Optical Fibre and Cable Joint Stock Limited Company (YOFC). http://en.yofc.com/.

http://en.yofc.com/.

" target="_blank">Google Scholar

Chiral Photonics, Inc. https://www.chiralphotonics.com/.

https://www.chiralphotonics.com/.

" target="_blank">Google Scholar

Optoscribe. http://www.optoscribe.com/.

http://www.optoscribe.com/.

" target="_blank">Google Scholar

Shen L, Gan L, Dong Z R, Li B R, Liu D M et al. End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photonics J 9, 1-8 (2017).

DOI: 10.1109/jphot.2017.2678165

CrossRef Google Scholar

Diamandi H H, London Y, Zadok A. Opto-mechanical inter-core cross-talk in multi-core fibers. Optica 4, 289-297 (2017).

DOI: 10.1364/OPTICA.4.000289

CrossRef Google Scholar

Bashan G, Diamandi H H, London Y, Preter E, Zadok A. Optomechanical time-domain reflectometry. Nat Commun 9, 2991 (2018).

DOI: 10.1038/s41467-018-05404-0

CrossRef Google Scholar

Chow D M, Yang Z S, Soto M A, Thévenaz L. Distributed forward Brillouin sensor based on local light phase recovery. Nat Commun 9, 2990 (2018).

DOI: 10.1038/s41467-018-05410-2

CrossRef Google Scholar

Related Articles
Show full outline

Catalog

    Chao Lu

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Distributed multicore fiber sensors
    • Figure  1

      (a) Cross-sectional view of the fabricated 7-core fiber. (b) Endview of the 7-SMF bundle. (c) The packaged MCF fan-in/out coupler. Figure reproduced from ref.22, Optical Society of America.

    • Figure  2

      Schematic diagram of the bent MCF with a bending radius of R. Core A and Core B represent the elongated outer side core and the compressed inner side core, respectively.Figure reproduced from ref.24, Optical Society of America.

    • Figure  3

      The transversal spatial distribution of cores of a seven-core fiber, showing the definitions of some important geometrical parameters.Figure reproduced from ref.25, Optical Society of America.

    • Figure  4

      An example of multicore fiber-based shape measurement. Figure reproduced from ref.26, Optical Society of America.

    • Figure  5

      Strain measurements in a multicore fiber by using co-located fiber Bragg grating arrays for shape sensing.

    • Figure  6

      Illustration of shape sensing using helical multicore optical fiber.(a) Microscope view of the four-core sensing fiber, sensing triad in red. (b) Illustration of helical cores along length of fiber. Figure reproduced from ref.40, SPIE.

    • Figure  7

      (a) Reel-to-reel array inscription apparatus allowing continuous fabrication of gratings in all cores through UV transparent coating. (b) End-view image of a seven-core fiber with coating removed. (c) Twisted multicore fiber schematic showing UV transparent coating (right). Bare glass region (left) shown to highlight twisted multicore continuous gratings. Figure reproduced from ref.44, IEEE.

    • Figure  8

      Top view of the Brillouin gain pectrum in an off-center core of the MCF showing bound random BFS variations resulting from bending due to fiber coiling. Figure reproduced from ref.46, IEEE.

    • Figure  9

      (a) Extracted Brillouin frequency shift for different bending radii. (b) Dependence of BFS on curvature measured along an outer core of the MCF. The error intervals on the curvature and the measured BFS are marked in green and purple triangle dots, respectively. Figure reproduced from ref.25, Optical Society of America.

    • Figure  10

      (a) Three O-shapes made for validating the ability of distributed curvature and shape sensing based on BOTDA in MCF. (b) The measured BFS profiles as a function of distance along three cores around the 3 O-shape regions. (c) Retrieved bending angle for the 3 O-shape regions. (d) Retrieved curvature for the 3 O-shape regions. Figure reproduced from ref.25, Optical Society of America.

    • Figure  11

      Experimental setup of the MCF based SDM ROTDR and BOTDR hybrid system. LD: Laser diode; PC: polarization controller; SOA: semiconductor optical amplifier; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PS: polarization switch; BPF: bandpass filter; BPD: balanced photodetector; Att.: tunable attenuator; APD: avalanche photodiode; ESA: electrical spectrum analyzer; OSc.: oscilloscope; the inset shows the cross-section view of the used MCF in the experiment. Figure reproduced from ref.53, Optical Society of America.

    • Figure  12

      (a) Cross-sectional view of the heterogeneous MCF, whose outer six cores are made from the same preform but the central core is made from another preform. (b) Relative index profile of the heterogeneous MCF. Figure reproduced from ref.56, Optical Society of America.

    • Figure  13

      The measured BGS of a heterogeneous MCF. (a) The central core with peak at ~10.81 GHz. (b) The outer core with peak at ~10.74 GHz. Figure reproduced from ref.56, Optical Society of America.

    • Figure  14

      The measured BFS of two symmetrical outer cores when the MCF was spooled with random orientations; the green trace is the averaged BFS of two symmetrical outer cores. Figure reproduced from ref.56, Optical Society of America.

    • Figure  15

      Experimental setup of the MCF SDM ROTDR and φ-OTDR hybrid sensor. LD: Laser diode; PC: polarization controller; SOA: semiconductor optical amplifier; PG: pulse generator; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; OC: optical coupler; Att.: tunable attenuator; APD: avalanche photodiode; PD: photodetector; OSc.: oscilloscope; the inset shows the cross sectional view of the seven-core MCF. Figure reproduced from ref.61, IEEE.

    • Figure  16

      Experimental setup for the SDM reflectometer and interferometer hybrid sensor. LD: Laser diode; OC: optical coupler; PC: polarization controller; Att.: tunable attenuator; EOM: electro-optic modulator; PG: pulse generator; EDFA: erbium-doped fiber amplifier; BPF: band-pass filter; PD: photodetector; OSc.: oscilloscope. Figure reproduced from ref.63, IEEE.

    • Figure  17

      Experimental setup of the MCF based SDM hybrid BOTDA and φ-OTDR sensing system. LD: Laser diode; PC: polarization controller; SOA: semiconductor optical amplifier; MZM: Mach-Zehnder modulator; EDFA: erbium-doped fiber amplifier; PS: polarization switch; Att.: attenuator; PD: photodetector; Fan-in: fan-in coupler; Fan-out: fan-out coupler. Figure reproduced from ref.67, Optical Society of America.

    • Figure  1
    • Figure  2
    • Figure  3
    • Figure  4
    • Figure  5
    • Figure  6
    • Figure  7
    • Figure  8
    • Figure  9
    • Figure  10
    • Figure  11
    • Figure  12
    • Figure  13
    • Figure  14
    • Figure  15
    • Figure  16
    • Figure  17