Amina, Ji L F, Yan T Y, Ma R. Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Opto-Electron Adv 2, 190003 (2019). doi: 10.29026/oea.2019.190003
Citation: Amina, Ji L F, Yan T Y, Ma R. Ionization behavior and dynamics of picosecond laser filamentation in sapphire. Opto-Electron Adv 2, 190003 (2019). doi: 10.29026/oea.2019.190003

Original Article Open Access

Ionization behavior and dynamics of picosecond laser filamentation in sapphire

More Information
  • Currently, laser-induced structural modifications in optical materials have been an active field of research. In this paper, we reported structural modifications in the bulk of sapphire due to picosecond (ps) laser filamentation and analyzed the ionization dynamics of the filamentation. Numerical simulations uncovered that the high-intensity ps laser pulses generate plasma through multi-photon and avalanche ionizations that leads to the creation of two distinct types of structural changes in the material. The experimental bulk modifications consist of a void like structures surrounded by cracks which are followed by a submicrometer filamentary track. By increasing laser energy, the length of the damage and filamentary track appeared to increase. In addition, the transverse diameter of the damage zone increased due to the electron plasma produced by avalanche ionizations, but no increase in the filamentary zone diameter was observed with increasing laser energy.
  • 加载中
  • [1] Ahmed F, Ahsan M S, Lee M S, Jun M B G. Near-field modification of femtosecond laser beam to enhance single-shot pulse filamentation in glass medium. Appl Phys A 114, 1161-1165 (2014). doi: 10.1007/s00339-013-7705-4

    CrossRef Google Scholar

    [2] Lanier T E, Gulley J R. Nonlinear space-time focusing and filamentation of annular femtosecond pulses in dielectrics. J Opt Soc Am B 33, 292-301 (2016). doi: 10.1364/JOSAB.33.000292

    CrossRef Google Scholar

    [3] Masselin P, le Coq D, Bychkov E, Lépine E, Lin C et al. Laser filamentation in chalcogenide glass. Proc SPIE 7993, 79931B (2011). doi: 10.1117/12.881504

    CrossRef Google Scholar

    [4] Yang Q, Ji L F, Xu B, Yan T Y, Wang W H et al. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3 glass. Opto-Electron Eng 44, 1200-1209 (2017). doi: 10.3969/j.issn.1003-501X.2017.12.008

    CrossRef Google Scholar

    [5] Zhou R, Lin S D, Ding Y, Yang H, Ong K et al. Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1, 180014 (2018). doi: 10.29026/oea.2018.180014

    CrossRef Google Scholar

    [6] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Phys Rep 441, 47-189 (2007). doi: 10.1016/j.physrep.2006.12.005

    CrossRef Google Scholar

    [7] Galinis J, Tamošauskas G, Gražulevičiūtė I, Keblytė V, Jukna V et al. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses. Phys Rev A 92, 1-5 (2015). doi: 10.1103/PhysRevA.92.033857

    CrossRef Google Scholar

    [8] Liu Z, Lu X, Liu Q, Sun S, Li L et al. Ultraviolet conical emission produced by high-power femtosecond laser pulse in transparent media. Appl Phys B 108, 493-500 (2012). doi: 10.1007/s00340-012-5079-5

    CrossRef Google Scholar

    [9] Durand M, Jarnac A, Houard A, Liu Y, Grabielle S et al. Self-guided propagation of ultrashort laser pulses in the anomalous dispersion region of transparent solids: a new regime of filamentation. Phys Rev Lett 110, 115003 (2013). doi: 10.1103/PhysRevLett.110.115003

    CrossRef Google Scholar

    [10] Javaux Léger C, Mishchik K, Dematteo-Caulier O, Skupin S, Chimier B et al. Effects of burst mode on transparent materials processing. Proc SPIE 9351, 93510M (2015). doi: 10.1117/12.2079677

    CrossRef Google Scholar

    [11] Ji L F, Amina, Yan T Y, Wang W H, Wang T R et al. Research progress of ultrafast laser industrial applications based on filamentation. Opto-Electron Eng 44, 851-861 (2017).

    Google Scholar

    [12] Gulley J R, Liao J X, Lanier T E. Plasma generation by ultrashort multi-chromatic pulses during nonlinear propagation. Proc SPIE 8972, 89720T (2014). doi: 10.1117/12.2040666

    CrossRef Google Scholar

    [13] Gulley J R, Lanier T E. Model for ultrashort laser pulse-induced ionization dynamics in transparent solids. Phys Rev B 90, 155119 (2014). doi: 10.1103/PhysRevB.90.155119

    CrossRef Google Scholar

    [14] Stuart B C, Feit M D, Herman S, Rubenchik A M, Shore B W et al. Optical ablation by high-power short-pulse lasers. J Opt Soc Am B 13, 459-468 (1996). doi: 10.1364/JOSAB.13.000459

    CrossRef Google Scholar

    [15] Ferris C. Theoretical modeling of laser-induced absorption phenomena in optical materials (University of Nebraska, Lincoln, Nebraska, 2014).

    Google Scholar

    [16] Wang C W, Zhao Q Z, Qian J, Li Y B, Wang G D et al. Propagation of focused ultrashort pulse laser during micromachining of sapphire. Proc SPIE 9532, 95320O (2015). doi: 10.1117/12.2185003

    CrossRef Google Scholar

    [17] Benayas A, Jaque D, McMillen B, Chen K P. Thermal stability of microstructural and optical modifications induced in sapphire by ultrafast laser filamentation. J Appl Phys 107, 033522 (2010). doi: 10.1063/1.3280029

    CrossRef Google Scholar

    [18] DeSalvo R, Said A A, Hagan D J, Van Stryland E W, Sheik-Bahae M. Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids. IEEE J Quantum Electron 32, 1324-1333 (1996). doi: 10.1109/3.511545

    CrossRef Google Scholar

    [19] Arola E. Theoretical studies on multiphoton absorption of ultrashort laser pulses in sapphire. IEEE J Quantum Electron 50, 709-720 (2014). doi: 10.1109/JQE.2014.2328101

    CrossRef Google Scholar

    [20] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Express 7, 196-198 (1982). doi: 10.1364/OL.7.000196

    CrossRef Google Scholar

    [21] Keldysh L V. Ionization in the field of a strong electromagnetic wave. Sov Phys JETP 20, 1307-1314 (1965).

    Google Scholar

    [22] Papazoglou D G, Zergioti I, Tzortzakis S, Sgouros G, Maravelias G et al. Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica. Appl Phys A 81, 241-244 (2005). doi: 10.1007/s00339-005-3271-8

    CrossRef Google Scholar

    [23] Lotti A. Pulse shaping and ultrashort laser pulse filamentation for applications in extreme nonlinear optics (University of Insubria, Insubria, 2012).

    Google Scholar

    [24] Couairon A, Sudrie L, Franco M, Prade B, Mysyrowicz A. Filamentation and damage in fused silica induced by tightly focused femtosecond laser pulses. Phys Rev B 71, 125435 (2005). doi: 10.1103/PhysRevB.71.125435

    CrossRef Google Scholar

    [25] Wu M T, Guo B, Zhao Q L, Fan R W, Dong Z W et al. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface. Opt Lasers Eng 105, 60-67 (2018). doi: 10.1016/j.optlaseng.2018.01.002

    CrossRef Google Scholar

    [26] Saliminia A, Nguyen N T, Chin S L, Vallée R. The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses. Opt Commun 241, 529-538 (2004). doi: 10.1016/j.optcom.2004.07.063

    CrossRef Google Scholar

    [27] Liao M S, Gao W Q, Cheng T L, Duan Z C, Xue X J et al. Filamentation and supercontinuum generation in tellurite glass. Proc SPIE 8621, 86211O (2013). doi: 10.1117/12.2001734

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7532) PDF downloads(2193) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint