Guo J Y, Wang T, Quan B G, Zhao H, Gu C Z et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029
Citation: Guo J Y, Wang T, Quan B G, Zhao H, Gu C Z et al. Polarization multiplexing for double images display. Opto-Electron Adv 2, 180029 (2019). doi: 10.29026/oea.2019.180029

Original Article Open Access

Polarization multiplexing for double images display

More Information
  • Metasurface provides subwavelength structures for manipulating wavefronts of light. The benefits of subwavelength components offer a continuous modulation of amplitude, phase, and polarization, thus eliminating the production of higher-order images and improving the utilization of light intensity. Despite the rapid progress in this field, multiparameter control of light using single layer metasurface is rarely reported. In fact, multiparameter control of light helps to improve information storage capacity and image fidelity. With simultaneous manipulation of polarization and amplitude at each pixel, it is possible to encode two separate images into one metasurface and reconstruct them under proper conditions. In a proof of concept experiment, we demonstrate an independent display of two binary images at the same position with polarization de-multiplexing from a single metasurface. This unique technology of encoding two images through amplitude and polarization manipulation provides a new opportunity for various applications in, such as encryption, information storage, polarization holograms, optical communications and fundamental physics.
  • 加载中
  • [1] Waller L, Tian L, Barbastathis G. Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt Express 18, 12552-12561(2010). doi: 10.1364/OE.18.012552

    CrossRef Google Scholar

    [2] de Boer J F, Milner T E, van Gemert M J C, Nelson J S. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 22, 934-936(1997). doi: 10.1364/OL.22.000934

    CrossRef Google Scholar

    [3] Cense B, Gao W H, Brown J M, Jones S M, Jonnal R S et al. Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics. Opt Express 17, 21634-21651(2009). doi: 10.1364/OE.17.021634

    CrossRef Google Scholar

    [4] Upatnieks J, Marks J, Fedorowicz R. Color holograms for white light reconstruction. Appl Phys Lett 8, 286-287(1966). doi: 10.1063/1.1754441

    CrossRef Google Scholar

    [5] Kong D Z, Shen X J, Shen Y Q, Wang X. Multi-image encryption based on interference of computer generated hologram. Optik125, 2365-2368(2014). doi: 10.1016/j.ijleo.2013.10.066

    CrossRef Google Scholar

    [6] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging. Opt Lett 24, 291-293(1999). doi: 10.1364/OL.24.000291

    CrossRef Google Scholar

    [7] Yue F Y, Wen D D, Xin J T, Gerardot B D, Li J S et al. Vector vortex beam generation with a single plasmonic metasurface. ACS Photonics 3, 1558-1563(2016). doi: 10.1021/acsphotonics.6b00392

    CrossRef Google Scholar

    [8] Liu Y C, Ling X H, Yi X N, Zhou X X, Luo H L et al. Realization of polarization evolution on higher-order poincaré sphere with metasurface. Appl Phys Lett 104, 191110(2014). doi: 10.1063/1.4878409

    CrossRef Google Scholar

    [9] Pors A, Nielsen M G, Della Valle G, Willatzen M, Albrektsen O et al. Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. Opt Lett 36, 1626-1628(2011). doi: 10.1364/OL.36.001626

    CrossRef Google Scholar

    [10] Blanchard R, Aoust G, Genevet P, Yu N F, Kats M A et al. Modeling nanoscale v-shaped antennas for the design of optical phased arrays. Phys Rev B 85, 155457(2012). doi: 10.1103/PhysRevB.85.155457

    CrossRef Google Scholar

    [11] Fan K B, Suen J Y, Liu X Y, Padilla W J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601-604(2017). doi: 10.1364/OPTICA.4.000601

    CrossRef Google Scholar

    [12] Chen Z H, Tao J, Gu J H, Li J, Hu D et al. Tunable metamaterial-induced transparency with gate-controlled on-chip graphene metasurface. Opt Express 24, 29216-29225(2016). doi: 10.1364/OE.24.029216

    CrossRef Google Scholar

    [13] High A A, Devlin R C, Dibos A, Polking M, Wild D S et al. Visible-frequency hyperbolic metasurface. Nature 522, 192-196(2015). doi: 10.1038/nature14477

    CrossRef Google Scholar

    [14] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M et al. MEMS-tunable dielectric metasurface lens. Nat Commun 9, 812(2018). doi: 10.1038/s41467-018-03155-6

    CrossRef Google Scholar

    [15] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat Commun 7, 13682(2016). doi: 10.1038/ncomms13682

    CrossRef Google Scholar

    [16] Miyazaki H T, Kasaya T, Iwanaga M, Choi B, Sugimoto Y et al. Dual-band infrared metasurface thermal emitter for CO2 sensing. Appl Phys Lett 105, 121107(2014). doi: 10.1063/1.4896545

    CrossRef Google Scholar

    [17] Heydari S, Rastan I, Parvin A, Pirooj A, Zarrabi F B. Investigation of novel fractal shape of the nano-aperture as a metasurface for bio sensing application. Phys Lett A 381, 140-144(2017). doi: 10.1016/j.physleta.2016.10.028

    CrossRef Google Scholar

    [18] Wan W W, Gao J, Yang X D. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541(2017). doi: 10.1002/adom.201700541

    CrossRef Google Scholar

    [19] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light. Nat Commun 4, 2807(2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [20] Wan W W, Gao J, Yang X D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671-10680(2016). doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [21] Ye W M, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930(2016). doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [22] Walter F, Li G X, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 17, 3171-3175(2017). doi: 10.1021/acs.nanolett.7b00676

    CrossRef Google Scholar

    [23] Li L L, Cui T J, Ji W, Liu S, Ding J et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat Commun 8, 197(2017). doi: 10.1038/s41467-017-00164-9

    CrossRef Google Scholar

    [24] Li Y B, Li L L, Xu B B, Wu W, Wu R Y et al. Transmission-type 2-bit programmable metasurface for single-sensor and single-frequency microwave imaging. Sci Rep 6, 23731(2016). doi: 10.1038/srep23731

    CrossRef Google Scholar

    [25] Dong D S, Yang J, Cheng Q, Zhao J, Gao L H et al. Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv Opt Mater 3, 1405-1410(2015). doi: 10.1002/adom.201500156

    CrossRef Google Scholar

    [26] Orazbayev B, Estakhri N M, Beruete M, Alù A. Terahertz carpet cloak based on a ring resonator metasurface. Phys Rev B 91, 195444(2015). doi: 10.1103/PhysRevB.91.195444

    CrossRef Google Scholar

    [27] Yao Y, Shankar R, Kats M A, Song Y, Kong J et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 14, 6526-6532(2014). doi: 10.1021/nl503104n

    CrossRef Google Scholar

    [28] Mehmood M Q, Mei S T, Hussain S, Huang K, Siew S Y et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv Mater 28, 2533-2539(2016). doi: 10.1002/adma.201504532

    CrossRef Google Scholar

    [29] Deng Z L, Deng J H, Zhuang X, Wang S, Li K F et al. Diatomic metasurface for vectorial holography. Nano Lett 18, 2885-2892(2018). doi: 10.1021/acs.nanolett.8b00047

    CrossRef Google Scholar

    [30] Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533(2016). doi: 10.1038/ncomms12533

    CrossRef Google Scholar

    [31] Wang Q, Plum E, Yang Q L, Zhang X Q, Xu Q et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light: Sci Appl 7, 25(2018). doi: 10.1038/s41377-018-0019-8

    CrossRef Google Scholar

    [32] Zhang F, Pu M B, Li X, Gao P, Ma X L et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin-orbit interactions. Adv Funct Mater 27, 1204295(2017). doi: 10.1002/adfm.201704295

    CrossRef Google Scholar

    [33] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam. Opt Lett 36, 2510-2512(2011). doi: 10.1364/OL.36.002510

    CrossRef Google Scholar

    [34] Gao H, Rosenberry M, Batelaan H. Light storage with light of arbitrary polarization. Phys Rev A 67, 053807(2003). doi: 10.1103/PhysRevA.67.053807

    CrossRef Google Scholar

    [35] Rong L, Xiao W, Pan F, Liu S, Li R. Speckle noise reduction in digital holography by use of multiple polarization holograms. Chin Opt Lett 8, 653-655(2010). doi: 10.3788/COL

    CrossRef Google Scholar

    [36] Yuan C J, Situ G H, Pedrini G, Ma J, Osten W. Resolution improvement in digital holography by angular and polarization multiplexing. Appl Opt 50, B6-B11(2011). doi: 10.1364/AO.50.0000B6

    CrossRef Google Scholar

    [37] Xie Z W, Lei T, Si G Y, Wang X Y, Lin J et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth. ACS Photonics 4, 2158-2164(2017). doi: 10.1021/acsphotonics.7b00710

    CrossRef Google Scholar

    [38] Yue F Y, Zhang C M, Zang X F, Wen D D, Gerardot B D et al. High-resolution grayscale image hidden in a laser beam. Light: Sci Appl 7, 17129(2018). doi: 10.1038/lsa.2017.129

    CrossRef Google Scholar

    [39] Decker M, Staude I, Falkner M, Dominguez J, Neshev D N et al. High-efficiency dielectric huygens' surfaces. Adv Opt Mater 3, 813-820(2015). doi: 10.1002/adom.v3.6

    CrossRef Google Scholar

    [40] Devlin R C, Khorasaninejad M, Chen W T, Oh J, Capasso F. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA 113, 10473-10478(2016). doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [41] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A. High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms. Opt Express 24, 18468-18477(2016). doi: 10.1364/OE.24.018468

    CrossRef Google Scholar

    [42] Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937-943(2015). doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [43] Mueller J P B, Rubin N A, Devlin R C, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901(2017) doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(9553) PDF downloads(2990) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint