Ruishan Chen, Jinghao Wang, Xiaoqiang Zhang, et al. Fiber-based mode converter for generating optical vortex beams. Opto‐Electron Adv 1, 180003 (2018). doi: 10.29026/oea.2018.180003
Citation: Ruishan Chen, Jinghao Wang, Xiaoqiang Zhang, et al. Fiber-based mode converter for generating optical vortex beams. Opto‐Electron Adv 1, 180003 (2018). doi: 10.29026/oea.2018.180003

Original Article Open Access

Fiber-based mode converter for generating optical vortex beams

More Information
  • These authors contributed equally to this work

  • Corresponding author: A T Wang, E-mail: atwang@ustc.edu.cn
  • In this work, an all-fiber-based mode converter for generating orbital angular momentum (OAM) beams is proposed and numerically investigated. Its structure is constructed by cascading a mode selective coupler (MSC) and an inner elliptical cladding fiber (IECF). OAM modes refer to a combination of two orthogonal LPlm modes with a phase difference of ±π/2. By adjusting the parameters and controlling the splicing angle of MSC and IECF appropriately, higher-order OAM modes with topological charges of l = ±1, ±2, ±3 can be obtained with the injection of the fundamental mode LP01, resulting in a mode-conversion efficiency of almost 100%. This achievement may pave the way towards the realization of a compact, all-fiber, and high-efficiency device for increasing the transmission capacity and spectral efficiency in optical communication systems with OAM mode multiplexing.
  • 加载中
  • [1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185-8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [2] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics 6, 488-496 (2012). doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [3] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 7, 66-106 (2015). doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [4] Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861

    CrossRef Google Scholar

    [5] Dholakia K, Čižmár T. Shaping the future of manipulation. Nat Photonics 5, 335-342 (2011). doi: 10.1038/nphoton.2011.80

    CrossRef Google Scholar

    [6] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 5, 343-348 (2011). doi: 10.1038/nphoton.2011.81

    CrossRef Google Scholar

    [7] Tkachenko G, Brasselet E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat Commun 5, 4491 (2014). doi: 10.1038/ncomms5491

    CrossRef Google Scholar

    [8] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780-782 (1994). doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [9] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D et al. A quantum memory for orbital angular momentum photonic qubits. Nat Photonics 8, 234-238 (2014). doi: 10.1038/nphoton.2013.355

    CrossRef Google Scholar

    [10] Sueda K, Miyaji G, Miyanaga N, Nakatsuka M. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt Express 12, 3548-3553 (2004). doi: 10.1364/OPEX.12.003548

    CrossRef Google Scholar

    [11] Beijersbergen M W, Allen L, Van der Veen H E L O, Woerdman J P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96, 123-132 (1993). doi: 10.1016/0030-4018(93)90535-D

    CrossRef Google Scholar

    [12] Dashti P Z, Alhassen F, Lee H P. Observation of orbital angular momentum transfer between acoustic and optical vortices in optical fiber. Phys Rev Lett 96, 043604 (2006). doi: 10.1103/PhysRevLett.96.043604

    CrossRef Google Scholar

    [13] Jiang Y C, Ren G B, Lian Y D, Zhu B F, Jin W X et al. Tunable orbital angular momentum generation in optical fibers. Opt Lett 41, 3535-3538 (2016). doi: 10.1364/OL.41.003535

    CrossRef Google Scholar

    [14] Li S H, Mo Q, Hu X, Du C, Wang J. Controllable all-fiber orbital angular momentum mode converter. Opt Lett 40, 4376-4379 (2015). doi: 10.1364/OL.40.004376

    CrossRef Google Scholar

    [15] Chen R S, Sun F L, Yao J N, Wang J H, Ming H et al. Mode-locked all-fiber laser generating optical vortex pulses with tunable repetition rate. Appl Phys Lett 112, 261103 (2018). doi: 10.1063/1.5039566

    CrossRef Google Scholar

    [16] Jin X Q, Pang F F, Zhang Y, Huang S J, Li Y C et al. Generation of the first-order OAM modes in single-ring fibers by offset splicing technology. IEEE Photonic Tech L 28, 1581-1584 (2016).

    Google Scholar

    [17] Zhang Y, Pang F F, Liu H H, Jin X Q, Huang S J et al. Generation of the first-order OAM modes in ring fibers by exerting pressure technology. IEEE Photonics J 9, 7101609 (2017).

    Google Scholar

    [18] Lin Z X, Wang A T, Xu L X, Zhang X Q, Sun B et al. Generation of optical vortices using a helical fiber Bragg grating. J Lightwave Technol 32, 2152-2156 (2014). doi: 10.1109/JLT.2014.2320539

    CrossRef Google Scholar

    [19] Zhang X Q, Wang A T, Chen R S, Zhou Y, Ming H et al. Generation and conversion of higher order optical vortices in optical fiber with helical fiber Bragg gratings. J Lightwave Technol 34, 2413-2418 (2016). doi: 10.1109/JLT.2016.2536037

    CrossRef Google Scholar

    [20] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings. Opt Lett 40, 4010-4013 (2015). doi: 10.1364/OL.40.004010

    CrossRef Google Scholar

    [21] Fang L, Wang J. Mode conversion and orbital angular momentum transfer among multiple modes by helical gratings. IEEE J Quantum Elect 52, 6600306 (2016).

    Google Scholar

    [22] Yan Y, Wang J, Zhang L, Yang J Y, Fazal I M et al. Fiber coupler for generating orbital angular momentum modes. Opt Lett 36, 4269-4271 (2011). doi: 10.1364/OL.36.004269

    CrossRef Google Scholar

    [23] Yan Y, Zhang L, Wang J, Yang J Y, Fazal I M et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes. Opt Lett 37, 3294-3296 (2012). doi: 10.1364/OL.37.003294

    CrossRef Google Scholar

    [24] Huang W, Liu Y G, Wang Z, Zhang W C, Luo M M et al. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber. Opt Express 23, 33741-33752 (2015). doi: 10.1364/OE.23.033741

    CrossRef Google Scholar

    [25] Guan B B, Scott R P, Qin C, Fontaine N K, Su T H et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit. Opt Express 22, 145-156 (2014). doi: 10.1364/OE.22.000145

    CrossRef Google Scholar

    [26] Su T H, Scott R P, Djordjevic S S, Fontaine N K, Geisler D J et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. Opt Express 20, 9396-9402 (2012). doi: 10.1364/OE.20.009396

    CrossRef Google Scholar

    [27] Fontaine N K, Doerr C R, Buhl L L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits. In OFC/NFOEC 1-3 (IEEE, 2012).

    Google Scholar

    [28] Cai X L, Wang J W, Strain M J, Johnson-Morris B, Zhu J B et al. Integrated compact optical vortex beam emitters. Science 338, 363-366 (2012). doi: 10.1126/science.1226528

    CrossRef Google Scholar

    [29] Ren H R, Li X P, Zhang Q M, Gu M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805-809 (2016). doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [30] Wang S, Deng Z L, Cao Y Y, Hu D J, Xu Y et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics J 10, 5700109 (2018).

    Google Scholar

    [31] Pu M B, Li X, Ma X L, Wang Y Q, Zhao Z Y et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [32] Riesen N, Love J D. Weakly-guiding mode-selective fiber couplers. IEEE J Quantum Elect 48, 941-945 (2012). doi: 10.1109/JQE.2012.2196259

    CrossRef Google Scholar

    [33] Whalen M S, Wood T H. Effectively nonreciprocal evanescent-wave optical-fibre directional coupler. Electron Lett 21, 175-176 (1985). doi: 10.1049/el:19850123

    CrossRef Google Scholar

    [34] Wang T, Wang F, Shi F, Pang F F, Huang S J et al. Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler. J Lightwave Technol 35, 2161-2166 (2017). doi: 10.1109/JLT.2017.2676241

    CrossRef Google Scholar

    [35] Wan H D, Wang J, Zhang Z X, Cai Y, Sun B et al. High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler. Opt Express 25, 11444-11451 (2017). doi: 10.1364/OE.25.011444

    CrossRef Google Scholar

    [36] Huang W P. Coupled-mode theory for optical waveguides: an overview. J Opt Soc Am A 11, 963-983 (1994). doi: 10.1364/JOSAA.11.000963

    CrossRef Google Scholar

    [37] Zeng X L, Li Y, Li W, Zhang L Y, Wu J. All-fiber broadband degenerate mode rotator for mode-division multiplexing systems. IEEE Photonic Tech L 28, 1383-1386 (2016). doi: 10.1109/LPT.2016.2541898

    CrossRef Google Scholar

    [38] Katsuyama T, Matsumura H, Suganuma T. Low-loss single-polarization fibers. Electronics Lett 17, 473-474 (1981). doi: 10.1049/el:19810330

    CrossRef Google Scholar

    [39] Molina-Terriza G, Torres J P, Torner L. Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. Phys Rev Lett 88, 013601 (2001). doi: 10.1103/PhysRevLett.88.013601

    CrossRef Google Scholar

    [40] Zhao P, Li S K, Feng X, Cui K Y, Liu F et al. Measuring the complex orbital angular momentum spectrum of light with a mode-matching method. Opt Lett 42, 1080-1083 (2017). doi: 10.1364/OL.42.001080

    CrossRef Google Scholar

    [41] Han Y, Liu Y G, Huang W, Wang Z, Guo J Q et al. Generation of linearly polarized orbital angular momentum modes in a side-hole ring fiber with tunable topology numbers. Opt Express 24, 17272-17284 (2016). doi: 10.1364/OE.24.017272

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(10281) PDF downloads(3834) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint