Ye H G, Su Z C, Tang F, Bao Y T, Lao X Z et al. Probing defects in ZnO by persistent phosphorescence. Opto-Electron Adv 1, 180011 (2018). doi: 10.29026/oea.2018.180011
Citation: Ye H G, Su Z C, Tang F, Bao Y T, Lao X Z et al. Probing defects in ZnO by persistent phosphorescence. Opto-Electron Adv 1, 180011 (2018). doi: 10.29026/oea.2018.180011

Original Article Open Access

Probing defects in ZnO by persistent phosphorescence

More Information
  • Native point defects in ZnO are so complicated that most of them are still debating issues, although they have been studied for decades. In this paper, we experimentally reveal two sub-components usually hidden in the low energy tail of the main broad green luminescence band peaking at 547 nm (~2.267 eV) in intentionally undoped ZnO single crystal by selecting the below-band-gap (BBG) optical excitations (e.g. light wavelengths of 385 nm and 450 nm). Moreover, both sub-components are manifested as long persistent phosphorescence once the BBG excitations are removed. With the aid of a newly developed model, the energy depths of two electron traps involved within the long lived orange luminescence are determined to be 44 meV and 300 meV, respectively. The candidates of these two electron traps are argued to be most likely hydrogen and zinc interstitials in ZnO.
  • 加载中
  • [1] Hirschwald W H. Zinc oxide: an outstanding example of a binary compound semiconductor. Acc Chem Res 18, 228-234 (1985). doi: 10.1021/ar00116a001

    CrossRef Google Scholar

    [2] Jagadish C, Pearton S J. Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties, and Applications (Elsevier, Amsterdam, 2006).

    Google Scholar

    [3] Klingshirn C F, Waag A, Hoffmann A, Geurts J. Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer, Berlin Heidelberg, 2010).

    Google Scholar

    [4] Sun X W, Yi Y. ZnO Nanostructures and Their Applications (CRC Press, New York, 2016).

    Google Scholar

    [5] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A et al. A comprehensive review of ZnO materials and devices. J Appl Phys 98, 041301 (2005). doi: 10.1063/1.1992666

    CrossRef Google Scholar

    [6] Srikant V, Clarke D R. On the optical band gap of zinc oxide. J Appl Phys 83, 5447-5451 (1998). doi: 10.1063/1.367375

    CrossRef Google Scholar

    [7] Kohan A F, Ceder G, Morgan D, Van de Walle C G. First-principles study of native point defects in ZnO. Phys Rev B 61, 15019-15027 (2000). doi: 10.1103/PhysRevB.61.15019

    CrossRef Google Scholar

    [8] Zhang S B, Wei S H, Zunger A. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys Rev B 63, 075205 (2001). doi: 10.1103/PhysRevB.63.075205

    CrossRef Google Scholar

    [9] Shi S L, Li G Q, Xu S J, Zhao Y, Chen G H. Green luminescence band in ZnO: fine structures, electron-phonon coupling, and temperature effect. J Phys Chem B 110, 10475-10478 (2006). doi: 10.1021/jp0610968

    CrossRef Google Scholar

    [10] Sokol A A, French S A, Bromley S T, Catlow R A, Van Dam H J et al. Point defects in ZnO. Faraday Discuss 134, 267-282 (2007). doi: 10.1039/B607406E

    CrossRef Google Scholar

    [11] Janotti A, Van de Walle C G. Native point defects in ZnO. Phys Rev B 76, 165202 (2007). doi: 10.1103/PhysRevB.76.165202

    CrossRef Google Scholar

    [12] McCluskey M D, Jokela S J. Defects in ZnO. J Appl Phys 106, 071101 (2009). doi: 10.1063/1.3216464

    CrossRef Google Scholar

    [13] Dai X M, Xu S J, Ling C C, Brauer G, Anwand W et al. Emission bands of nitrogen-implantation induced luminescent centers in ZnO crystals: experiment and theory. J Appl Phys 112, 046102 (2012). doi: 10.1063/1.4749402

    CrossRef Google Scholar

    [14] Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V. P-type ZnO materials: theory, growth, properties and devices. Prog Mater Sci 58, 874-985 (2013). doi: 10.1016/j.pmatsci.2013.03.002

    CrossRef Google Scholar

    [15] Bollmann J, Simon D K. Deep level defects in ZnO. Physica B Condens Matter 439, 14-19 (2014). doi: 10.1016/j.physb.2013.11.006

    CrossRef Google Scholar

    [16] Chen Y N, Xu S J, Zheng C C, Ning J Q, Ling F C C et al. Nature of red luminescence band in research-grade ZnO single crystals: a "self-activated" configurational transition. Appl Phys Lett 105, 041912 (2014). doi: 10.1063/1.4892356

    CrossRef Google Scholar

    [17] Ding L, Li B K, He H T, Ge W K, Wang J N et al. Classification of bound exciton complexes in bulk ZnO by magnetophotoluminescence spectroscopy. J Appl Phys 105, 053511 (2009). doi: 10.1063/1.3087762

    CrossRef Google Scholar

    [18] Chen Y N, Zheng C C, Ning J Q, Wang R X, Ling C C et al. Who make transparent ZnO colorful?-Ion implantation and thermal annealing effects. Superlattices Microstruct 99, 208-213 (2016). doi: 10.1016/j.spmi.2016.02.022

    CrossRef Google Scholar

    [19] Ye H G, Su Z C, Tang F, Wang M Z, Chen G D et al. Excitation dependent phosphorous property and new model of the structured green luminescence in ZnO. Sci Rep 7, 41460 (2017). doi: 10.1038/srep41460

    CrossRef Google Scholar

    [20] Alkauskas A, Pasquarello A. Band-edge problem in the theoretical determination of defect energy levels: the O vacancy in ZnO as a benchmark case. Phys Rev B 84, 125206 (2011). doi: 10.1103/PhysRevB.84.125206

    CrossRef Google Scholar

    [21] Koßmann J, Hättig C. Investigation of interstitial hydrogen and related defects in ZnO. Phys Chem Chem Phys 14, 16392-16399 (2012). doi: 10.1039/c2cp42928d

    CrossRef Google Scholar

    [22] Lyons J L, Alkauskas A, Janotti A, Van de Walle C G. Deep donor state of the copper acceptor as a source of green luminescence in ZnO. Appl Phys Lett 111, 042101 (2017). doi: 10.1063/1.4995404

    CrossRef Google Scholar

    [23] Ye H G, Su Z C, Tang F, Chen G D, Wang J et al. Role of free electrons in phosphorescence in n-type wide bandgap semiconductors. Phys Chem Chem Phys 19, 30332-30338 (2017). doi: 10.1039/C7CP05796B

    CrossRef Google Scholar

    [24] Rodnyi P A, Khodyuk I V. Optical and luminescence properties of zinc oxide (Review). Opt Spectrosc 111, 776-785 (2011). doi: 10.1134/S0030400X11120216

    CrossRef Google Scholar

    [25] Wang X H, Xu S J. Two-electron-satellite transition of donor bound exciton in ZnO: radiative Auger effect. Appl Phys Lett 102, 181909 (2013). doi: 10.1063/1.4804619

    CrossRef Google Scholar

    [26] Xu S J, Xiong S J, Shi S L. Resonant coupling of bound excitons with LO phonons in ZnO: excitonic polaron states and Fano interference. J Chem Phys 123, 221105 (2005). doi: 10.1063/1.2140701

    CrossRef Google Scholar

    [27] Heitz R, Hoffmann A, Broser I. Fe3+ center in ZnO. Phys Rev B 45, 8977-8988 (1992).

    Google Scholar

    [28] Melnick D A. Zinc oxide photoconduction, an oxygen adsorption process. J Chem Phys 26, 1136-1146 (1957). doi: 10.1063/1.1743483

    CrossRef Google Scholar

    [29] Takahashi Y, Kanamori M, Kondoh A, Minoura H, Ohya Y. Photoconductivity of ultrathin zinc oxide Films. Jpn J Appl Phys 33, 6611-6615 (1994). doi: 10.1143/JJAP.33.6611

    CrossRef Google Scholar

    [30] Murphy T E, Moazzami K, Phillips J D. Trap-related photoconductivity in ZnO epilayers. J Electron Mater 35, 543-549 (2006). doi: 10.1007/s11664-006-0097-x

    CrossRef Google Scholar

    [31] Liao Z M, Lu Y, Xu J, Zhang J M, Yu D P. Temperature dependence of photoconductivity and persistent photoconductivity of single ZnO nanowires. Appl Phys A 95, 363-366 (2009). doi: 10.1007/s00339-008-5058-1

    CrossRef Google Scholar

    [32] Lany S, Zunger A. Anion vacancies as a source of persistent photoconductivity in Ⅱ-Ⅵ and chalcopyrite semiconductors. Phys Rev B 72, 035215 (2005). doi: 10.1103/PhysRevB.72.035215

    CrossRef Google Scholar

    [33] Kang Y, Nahm H H, Han S. Light-induced peroxide formation in ZnO: origin of persistent photoconductivity. Sci Rep 6, 35148 (2016). doi: 10.1038/srep35148

    CrossRef Google Scholar

    [34] Jeffries B T, Gonzalez R, Chen Y, Summers G P. Luminescence in thermochemically reduced MgO: the role of hydrogen. Phys Rev B 25, 2077-2080 (1982). doi: 10.1103/PhysRevB.25.2077

    CrossRef Google Scholar

    [35] Li Y, Gecevicius M, Qiu J R. Long persistent phosphors—from fundamentals to applications. Chem Soc Rev 45, 2090-2136 (2016). doi: 10.1039/C5CS00582E

    CrossRef Google Scholar

    [36] Janotti A, Van de Walle C G. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys 72, 126501 (2009). doi: 10.1088/0034-4885/72/12/126501

    CrossRef Google Scholar

    [37] Oba F, Choi M, Togo A, Tanaka I. Point defects in ZnO: an approach from first principles. Sci Technol Adv Mater 12, 034302 (2011). doi: 10.1088/1468-6996/12/3/034302

    CrossRef Google Scholar

    [38] Van de Walle C G. Hydrogen as a cause of doping in Zinc Oxide. Phys Rev Lett 85, 1012-1015 (2000). doi: 10.1103/PhysRevLett.85.1012

    CrossRef Google Scholar

    [39] Hofmann D M, Hofstaetter A, Leiter F, Zhou H J, Henecker F et al. Hydrogen: a relevant shallow donor in Zinc Oxide. Phys Rev Lett 88, 045504 (2002). doi: 10.1103/PhysRevLett.88.045504

    CrossRef Google Scholar

    [40] Qiu H S, Meyer B, Wang Y M, Wöll C. Ionization energies of shallow donor states in ZnO created by reversible formation and depletion of H interstitials. Phys Rev Lett 101, 236401 (2008). doi: 10.1103/PhysRevLett.101.236401

    CrossRef Google Scholar

    [41] Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting Zinc Oxide. Phys Rev Lett 23, 579-581 (1969). doi: 10.1103/PhysRevLett.23.579

    CrossRef Google Scholar

    [42] Garces N Y, Wang L, Bai L, Giles N C, Halliburton L E. Role of copper in the green luminescence from ZnO crystals. Appl Phys Lett 81, 622-624 (2002). doi: 10.1063/1.1494125

    CrossRef Google Scholar

    [43] Ye J D, Gu S L, Qin F, Zhu S M, Liu S M et al. Correlation between green luminescence and morphology evolution of ZnO films. Appl Phys A 81, 759-762 (2005). doi: 10.1007/s00339-004-2996-0

    CrossRef Google Scholar

    [44] Čížek J, Valenta J, Hruška P, Melikhova O, Procházka I et al. Origin of green luminescence in hydrothermally grown ZnO single crystals. Appl Phys Lett 106, 251902 (2015). doi: 10.1063/1.4922944

    CrossRef Google Scholar

    [45] Prucnal S, Wu J D, Berencén Y, Liedke M O, Wagner A et al. Engineering of optical and electrical properties of ZnO by non-equilibrium thermal processing: the role of zinc interstitials and zinc vacancies. J Appl Phys 122, 035303 (2017). doi: 10.1063/1.4994796

    CrossRef Google Scholar

    [46] Zhou D M, Kittilstved K R. Electron trapping on Fe3+ sites in photodoped ZnO colloidal nanocrystals. Chem Commun 52, 9101-9104 (2016). doi: 10.1039/C6CC00514D

    CrossRef Google Scholar

    [47] Chen T X, Cao L, Zhang W H, Zhang W, Han Y Y et al. Correlation between electronic structure and magnetic properties of Fe-doped ZnO films. J Appl Phys 111, 123715 (2012). doi: 10.1063/1.4730605

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(7003) PDF downloads(2839) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint