We present a detailed analysis on mode evolution of grating-coupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guided-wave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the grating-coupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gap-mode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
Home > Journal Home > Opto-Electronic Advances
Opto-Electronic Advances
ISSN: 2096-4579
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
CN: 51-1781/TN
Opto-Electronic Advances is the open-access journal providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and opto-electronics.
Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip
Author Affiliations

First published at:Jul 20, 2018
Abstract
References
1 Gramotnev D K, Bozhevolnyi S I. Nanofocusing of electromagnetic radiation. Nat Photonics8, 13-22 (2013).
2 Stöckle R M, Suh Y D, Deckert V, Zenobi R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem Phys Lett318, 131-136 (2000). DOI:10.1016/S0009-2614(99)01451-7
3 Jiang S, Zhang Y, Zhang R, Hu C R, Liao M H et al. Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. Nat Nanotechnol10, 865-869 (2015). DOI:10.1038/nnano.2015.170
4 Zhong J H, Jin X, Meng L Y, Wang X, Su H S et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat Nanotechnol12, 132-136 (2017).
5 Li J F, Huang Y F, Ding Y, Yang Z L, Li S B et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature464, 392-395 (2010). DOI:10.1038/nature08907
6 Zhang W D, Li C, Gao K, Lu F F, Liu M et al. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse. Nanotechnology29, 205301 (2018). DOI:10.1088/1361-6528/aab294
7 Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P et al. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett8, 2497-2502 (2008). DOI:10.1021/nl8015297
8 Xu K C, Wang Z Y, Tan C F, Kang N, Chen L W et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics. ACS Appl Mater Interfaces 9, 26341-26349 (2017). DOI:10.1021/acsami.7b06669
9 Neacsu C C, Reider G A, Raschke M B. Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys Rev B71, 201402 (2005). DOI:10.1103/PhysRevB.71.201402
10 Kauranen M, Zayats A V. Nonlinear plasmonics. Nat Photonics6, 737-748 (2012). DOI:10.1038/nphoton.2012.244
11 Jin Y J, Chen L W, Wu M X, Lu X Z, Zhou R et al. Enhanced saturable absorption of the graphene oxide film via photonic nanojets. Opt Mater Express6, 1114-1121 (2016). DOI:10.1364/OME.6.001114
12 Chen L W, Zheng X R, Du Z R, Jia B H, Gu M et al. A frozen matrix hybrid optical nonlinear system enhanced by a particle lens. Nanoscale7, 14982-14988 (2015). DOI:10.1039/C5NR03304G
13 Du Z R, Chen L W, Kao T S, Wu M X, Hong M H. Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement. Beilstein J Nanotechnol6, 1199-1204 (2015). DOI:10.3762/bjnano.6.122
14 Chen C, Hayazawa N, Kawata S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat Commun5, 3312 (2014). DOI:10.1038/ncomms4312
15 Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature498, 82-86 (2013). DOI:10.1038/nature12151
16 Nerkararyan K V. Superfocusing of a surface polariton in a wedge-like structure. Phys Lett A237, 103-105 (1997). DOI:10.1016/S0375-9601(97)00722-6
17 Lindquist N C, Nagpal P, Lesuffleur A, Norris D J, Oh S H. Three-dimensional plasmonic nanofocusing. Nano Lett10, 1369-1373 (2010). DOI:10.1021/nl904294u
18 Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J et al. Nanofocusing with channel plasmon polaritons. Nano Lett9, 1278-1282 (2009). DOI:10.1021/nl900268v
19 Fernández-Domínguez A I, Maier S A, Pendry J B. Collection and concentration of light by touching spheres: a transformation optics approach. Phys Rev Lett105, 266807 (2010). DOI:10.1103/PhysRevLett.105.266807
20 Verhagen E, Polman A, Kuipers L K. Nanofocusing in laterally tapered plasmonic waveguides. Opt Express16, 45-57 (2008). DOI:10.1364/OE.16.000045
21 Tugchin B N, Janunts N, Klein A E, Steinert M, Fasold S et al. Plasmonic tip based on excitation of radially polarized conical surface plasmon polariton for detecting longitudinal and transversal fields. ACS Photonics2, 1468-1475 (2015). DOI:10.1021/acsphotonics.5b00339
22 Stadler J, Schmid T, Zenobi R. Developments in and practical guidelines for tip-enhanced Raman spectroscopy. Nanoscale4, 1856-1870 (2012). DOI:10.1039/C1NR11143D
23 Huang T X, Huang S C, Li M H, Zeng Z C, Wang X et al. Tip-enhanced Raman spectroscopy: tip-related issues. Anal Bioanal Chem407, 8177-8195 (2015). DOI:10.1007/s00216-015-8968-8
24 Verma P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem Rev117, 6447-6466 (2017). DOI:10.1021/acs.chemrev.6b00821
25 Ropers C, Neacsu C C, Elsaesser T, Albrecht M, Raschke M B et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett7, 2784-2788 (2007). DOI:10.1021/nl071340m
26 Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C et al. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett10, 592-596 (2010). DOI:10.1021/nl903574a
27 Berweger S, Atkin J M, Olmon R L, Raschke M B. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J Phys Chem Lett3, 945-952 (2012). DOI:10.1021/jz2016268
28 Xu T, Wang C T, Du C L, Luo X G. Plasmonic beam deflector. Opt Express16, 4753-4759 (2008). DOI:10.1364/OE.16.004753
29 Xu T, Du C L, Wang C T, Luo X G. Subwavelength imaging by metallic slab lens with nanoslits. Appl Phys Lett91, 201501 (2007). DOI:10.1063/1.2811711
30 Luo X G, Ishihara T. Surface plasmon resonant interference nanolithography technique. Appl Phys Lett84, 4780 (2004). DOI:10.1063/1.1760221
31 Sadiq D, Shirdel J, Lee J S, Selishcheva E, Park N et al. Adiabatic nanofocusing scattering-type optical nanoscopy of individual gold nanoparticles. Nano Lett11, 1609-1613 (2011). DOI:10.1021/nl1045457
32 Müller M, Kravtsov V, Paarmann A, Raschke M B, Ernstorfer R. Nanofocused Plasmon-driven sub-10 fs electron point source. ACS Photonics3, 611-619 (2016). DOI:10.1021/acsphotonics.5b00710
33 Schmidt S, Piglosiewicz B, Sadiq D, Shirdel J, Lee J S et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano6, 6040-6048 (2012). DOI:10.1021/nn301121h
34 Berweger S, Atkin J M, Olmon R L, Raschke M B. Adiabatic Tip-Plasmon focusing for Nano-Raman spectroscopy. J Phys Chem Lett1, 3427-3432 (2010). DOI:10.1021/jz101289z
35 Kravtsov V, Atkin J M, Raschke M B. Group delay and dispersion in adiabatic plasmonic nanofocusing. Opt Lett38, 1322-1324 (2013). DOI:10.1364/OL.38.001322
36 Esmann M, Becker S F, da Cunha B B, Brauer J H, Vogelgesang R et al. k-space imaging of the eigenmodes of sharp gold tapers for scanning near-field optical microscopy. Beilstein J Nanotechnol4, 603-610 (2013). DOI:10.3762/bjnano.4.67
37 Mihaljevic J, Hafner C, Meixner A J. Grating enhanced apertureless near-field optical microscopy. Opt Express23, 18401-18414 (2015). DOI:10.1364/OE.23.018401
38 Lee J S, Han S, Shirdel J, Koo S, Sadiq D et al. Superfocusing of electric or magnetic fields using conical metal tips: effect of mode symmetry on the plasmon excitation method. Opt Express19, 12342-12347 (2011). DOI:10.1364/OE.19.012342
39 Andrey P. Nanofocusing of surface Plasmons at the apex of metallic probe tips. J Nanoelectron Optoe5, 310-314 (2010). DOI:10.1166/jno.2010.1116
40 Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B6, 4370-4379 (1972). DOI:10.1103/PhysRevB.6.4370
41 Palik E D. Handbook of Optical Constants of Solids (Academic, San Diego, America, 1998).
42 Stockman M I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett93, 137404 (2004). DOI:10.1103/PhysRevLett.93.137404
43 Fang Z Y, Lin C F, Ma R M, Huang S, Zhu X. Planar plasmonic focusing and optical transport using CdS nanoribbon. ACS Nano4, 75-82 (2010). DOI:10.1021/nn900729n
44 Fang Z Y, Fan L R, Lin C F, Zhang D, Meixner A J et al. Plasmonic coupling of bow tie antennas with Ag nanowire. Nano Lett11, 1676-1680 (2011). DOI:10.1021/nl200179y
45 Gurevich V S, Libenson M N. Surface polaritons propagation along micropipettes. Ultramicroscopy57, 277-281 (1995). DOI:10.1016/0304-3991(94)00152-D
46 Babadjanyan A J, Margaryan N L, Nerkararyan K V. Superfocusing of surface polaritons in the conical structure. J Appl Phys87, 3785 (2000). DOI:10.1063/1.372414
47 Zhang W D, Huang L G, Wei K Y, Li P, Jiang B Q et al. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt Express24, 10376-10384 (2016). DOI:10.1364/OE.24.010376
48 Novotny L, Hafner C. Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function. Phys Rev E50, 4094-4106 (1994). DOI:10.1103/PhysRevE.50.4094
49 Gramotnev D K, Vogel M W, Stockman M I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J Appl Phys104, 034311 (2008). DOI:10.1063/1.2963699
50 Issa N A, Guckenberger R. Optical nanofocusing on tapered metallic waveguides. Plasmonics2, 31-37 (2007). DOI:10.1007/s11468-006-9022-7
Keywords:
Funds:
National Natural Science Foundation of China (NSFC) (61675169, 61377055 and 11634010), the National Key R&D Program of China (2017YFA0303800), and the Fundamental Research Funds for the Central Universities (3102017zy021, 3102017HQZZ 022)
Export Citations as:
For
Get Citation:
Lu F F, Zhang W D, Huang L G, Liang S H, Mao D et al. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron Adv 1, 180010 (2018).
Issue Cover
Cited By(23)
Opto-Electronic Advances, 2018
Chemical Society Reviews, 2019
Engineering Optics 2.0, 2019
Applied Physics Reviews, 2019
Applied Physics, 2019
Journal of Optics, 2019
Applied Physics Express, 2019
Journal of Physics and Chemistry of Solids, 2019
ACS Photonics, 2019
2019 International Conference on Optical MEMS and Nanophotonics (OMN), 2019
, 2020
Journal of Physics D: Applied Physics,, 2020
Applied Physics Express,, 2020
, 2020
Related Articles