Fang C Z, Liu Y, Zhang Q F, Han G Q, Gao X et al. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra. Opto-Electron Adv 1, 180004 (2018). doi: 10.29026/oea.2018.180004
Citation: Fang C Z, Liu Y, Zhang Q F, Han G Q, Gao X et al. Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra. Opto-Electron Adv 1, 180004 (2018). doi: 10.29026/oea.2018.180004

Review Open Access

Germanium-tin alloys: applications for optoelectronics in mid-infrared spectra

More Information
  • We summarize our work of the optoelectronic devices based on Germanium-tin (GeSn) alloys assisted with the Si3N4 liner stressor in mid-infrared (MIR) domains. The device characteristics are thoroughly analyzed by the strain distribution, band structure, and absorption characteristics. Numerical and analytical methods show that with optimal structural parameters, the device performance can be further improved and the wavelength application range can be extended to 2~5 μm in the mid-infrared spectra. It is demonstrated that this proposed strategy provides an effective technique for the strained-GeSn devices in future optical designs, which will be competitive for the optoelectronics applications in mid-infrared wavelength.
  • 加载中
  • [1] Mathews J, Beeler R T, Tolle J, Xu C, Roucka R et al. Direct-gap photoluminescence with tunable emission wavelength in Ge1-ySny alloys on silicon. Appl Phys Lett 97, 221912 (2010).

    Google Scholar

    [2] Chen R, Lin H, Huo Y J, Hitzman C, Kamins T I et al. Increased photoluminescence of strain-reduced, high-Sn composition Ge1-xSnx alloys grown by molecular beam epitaxy. Appl Phys Lett 99, 181125 (2011). doi: 10.1063/1.3658632

    CrossRef Google Scholar

    [3] Lin H, Chen R, Lu W S, Huo Y J, Kamins T I et al. Investigation of the direct band gaps in Ge1-xSnx alloys with strain control by photoreflectance spectroscopy. Appl Phys Lett 100, 102109 (2012). doi: 10.1063/1.3692735

    CrossRef Google Scholar

    [4] Yin W J, Gong X G, Wei S H. Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1-x alloys. Phys Rev B 78, 161203 (2008). doi: 10.1103/PhysRevB.78.161203

    CrossRef Google Scholar

    [5] de Guevara H P L, Rodríguez A G, Navarro-Contreras H, Vidal M A. Structural and optical properties of Ge1-xSnx alloys grown on GaAs (001) by R. F. Magnetron Sputtering. ECS Trans 64, 393-400 (2004).

    Google Scholar

    [6] D'Costa V R, Cook C S, Birdwell A G, Littler C L, Canonico M et al. Optical critical points of thin-film Ge1-ySny alloys: A comparative Ge1-ySny/Ge1-xSix study. Phys Rev B 73, 125207 (2006). doi: 10.1103/PhysRevB.73.125207

    CrossRef Google Scholar

    [7] Soref R A, Perry C H. Predicted band gap of the new semiconductor SiGeSn. J Appl Phys 69, 539-541 (1991). doi: 10.1063/1.347704

    CrossRef Google Scholar

    [8] He G, Atwater H A. Interband transitions in SnxGe1-x alloys. Phys Rev Lett 79, 1937-1940 (1997). doi: 10.1103/PhysRevLett.79.1937

    CrossRef Google Scholar

    [9] Moontragoon P, Ikonić Z, Harrison P. Band structure calculations of Si-Ge-Sn alloys: achieving direct band gap materials. Semicond Sci Technol 22, 742-748 (2007). doi: 10.1088/0268-1242/22/7/012

    CrossRef Google Scholar

    [10] Eckhardt C, Hummer K, Kresse G. Indirect-to-direct gap transition in strained and unstrained SnxGe1-x alloys. Phys Rev B 89, 165201 (2014). doi: 10.1103/PhysRevB.89.165201

    CrossRef Google Scholar

    [11] Attiaoui A, Moutanabbir O. Indirect-to-direct band gap transition in relaxed and strained Ge1-x-ySixSny ternary alloys. J Appl Phys 116, 063712 (2014). doi: 10.1063/1.4889926

    CrossRef Google Scholar

    [12] Wirths S, Ikonic Z, Tiedemann A T, Holl nder B, Stoica T et al. Tensely strained GeSn alloys as optical gain media. Appl Phys Lett 103, 192110 (2013). doi: 10.1063/1.4829360

    CrossRef Google Scholar

    [13] Wirths S, Geiger R, von den Driesh N, Mussler G, Stoica T et al. Lasing in direct-bandgap GeSn alloy grown on Si. Nat Photonics 9, 88-92 (2015). doi: 10.1038/nphoton.2014.321

    CrossRef Google Scholar

    [14] Soref R, Kouvetakis J, Tolle J, Menendez J, D'Costa V. Advances in SiGeSn technology. J Mater Res 22, 3281-3291 (2007). doi: 10.1557/JMR.2007.0415

    CrossRef Google Scholar

    [15] Bauer M R, Taraci J, Tolle J, Chizmeshya A V G, Zollner S et al. Ge–Sn semiconductors for band-gap and lattice engineering. Appl Phys Lett ]81, 2992-2994 (2002). doi: 10.1063/1.1515133

    CrossRef Google Scholar

    [16] Kouvetakis J, Chizmeshya A V G. New classes of Si-based photonic materials and device architectures via designer molecular routes. J Mater Chem 17, 1649–1655 (2007). doi: 10.1039/b618416b

    CrossRef Google Scholar

    [17] Sun G, Soref R A, Cheng H H. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. Opt Express 18, 19957–19965 (2010). doi: 10.1364/OE.18.019957

    CrossRef Google Scholar

    [18] Gassenq A, Gencarelli F, Van Campenhout J, Shimura Y, Loo R et al. GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. Opt Express 20, 27297–27303 (2012). doi: 10.1364/OE.20.027297

    CrossRef Google Scholar

    [19] Oehme M, Schmid M, Kaschel M, Gollhofer M, Widmann D et al. GeSn p-i-n detectors integrated on Si with up to 4% Sn. Appl Phys Lett 101, 141110 (2012). doi: 10.1063/1.4757124

    CrossRef Google Scholar

    [20] Oehme M, Kostecki K, Schmid M, Oliveira F, Kasper E et al. Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn. Thin Solid Films 557, 169–172 (2014). doi: 10.1016/j.tsf.2013.10.064

    CrossRef Google Scholar

    [21] Taoka N, Capellini G, von den Driesch N, Buca D, Zaumseil P et al. Sn migration control at high temperature due to high deposition speed for forming high-quality GeSn layer. Appl Phys Express 9, 031201 (2016). doi: 10.7567/APEX.9.031201

    CrossRef Google Scholar

    [22] Li H, Chang C, Chen T P, Cheng H H, Shi Z W et al. Characteristics of Sn segregation in Ge/GeSn heterostructures. Appl Phys Lett 105, 151906 (2014). doi: 10.1063/1.4898583

    CrossRef Google Scholar

    [23] Wang W, Li L Z, Zhou Q, Pan J S, Zhang Z et al. Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1-xSnx layer on Ge (001) substrate. Appl Surf Sci 321, 240–244 (2014). doi: 10.1016/j.apsusc.2014.10.011

    CrossRef Google Scholar

    [24] Wang W, Dong Y, Zhou Q, Tok E S, Yeo Y C. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure. J Phys D Appl Phys 49, 225102 (2016). doi: 10.1088/0022-3727/49/22/225102

    CrossRef Google Scholar

    [25] Gupta S, Magyari-K pe B, Nishi Y, Saraswat K C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. J Appl Phys 113, 073707 (2013). doi: 10.1063/1.4792649

    CrossRef Google Scholar

    [26] Zhang Q F, Liu Y, Yan J, Zhang C F, Hao Y et al. Theoretical investigation of tensile strained GeSn waveguide with Si3N4 liner stressor for mid-infrared detector and modulator applications. Opt Express 23, 7924–7932 (2015). doi: 10.1364/OE.23.007924

    CrossRef Google Scholar

    [27] Fujisawa T, Saitoh K. Material gain analysis of GeSn/SiGeSn quantum wells for mid-infrared Si-based light sources based on many-body theory. IEEE J Quantum Electron 51, 7100108 (2015).

    Google Scholar

    [28] Zhu Y H, Xu Q, Fan W J, Wang J W. Theoretical gain of strained GeSn0.02/Ge1-x-y' SixSny' quantum well laser. J Appl Phys 107, 073108 (2010). doi: 10.1063/1.3329424

    CrossRef Google Scholar

    [29] Zhang Q F, Liu Y, Yan J, Zhang C F, Hao Y et al. Simulation investigation of tensile strained GeSn fin photodetector with Si3N4 liner stressor for extension of absorption wavelength. Opt Express 23, 739–746 (2015). doi: 10.1364/OE.23.000739

    CrossRef Google Scholar

    [30] Capellini G, Reich C, Guha S, Yamamoto Y, Lisker M et al. Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. Opt Express 22, 399–410 (2014). doi: 10.1364/OE.22.000399

    CrossRef Google Scholar

    [31] Fenrich C S, Chen X C, Chen R, Huang Y C, Chung H et al. Strained pseudomorphic Ge1-xSnx multiple quantum well microdisk using SiNy stressor layer. ACS Photonics 3, 2231–2236 (2016). doi: 10.1021/acsphotonics.6b00562

    CrossRef Google Scholar

    [32] El Kurdi M, Prost M, Ghrib A, Sauvage S, Checoury X et al. Direct band gap germanium microdisks obtained with silicon nitride stressor layers. ACS Photonics 3, 443–448 (2016). doi: 10.1021/acsphotonics.5b00632

    CrossRef Google Scholar

    [33] Zhang Q F, Liu Y, Zhang C F, Huang Q Z, Hao Y et al. Tensile-strained mid-infrared GeSn detectors wrapped in Si3N4 liner stressor: theoretical investigation of impact of device architectures. IEEE Photonics J 7, 6803208 (2015).

    Google Scholar

    [34] Basu P K. Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Oxford, UK: Clarendon, 1997).

    Google Scholar

    [35] Palik E D. Handbook of Optical Constants of Solids (San Diego: Academic, 1998).

    Google Scholar

    [36] Liu Y, Fang C Z, Gao X, Han G Q, Zhang Q F et al. Theoretical investigation of tensile-strained GeSn/SiGeSn multiple quantum well laser wrapped in Si3N4 liner stressor. IEEE Photonics J 10, 1500609 (2018).

    Google Scholar

    [37] Zhang Q F, Liu Y, Han G Q, Shao Y, Gao X et al. Theoretical analysis of performance enhancement in GeSn/SiGeSn light-emitting diode enabled by Si3N4 liner stressor technique. Appl Opt 55, 9668–9674 (2016). doi: 10.1364/AO.55.009668

    CrossRef Google Scholar

    [38] Al-Kabi S, Ghetmiri S A, Margetis J, Pham T, Zhou Y Y et al. Optically pumped Si-based edge-emitting GeSn laser. In Proceedings of Conference on Lasers and Electro-Optics SW4C. 1 (OSA, 2017); http://doi.org/10.1364/CLEO_SI.2017.SW4C.1.

    Google Scholar

    [39] Stange D, von den Driesch N, Zabel T, Armand-Pilon F, Marzban B et al. Reduced threshold microdisk lasers from GeSn/SiGeSn heterostructures. In Proceedings of the 14th International Conference on Group Ⅳ Photonics 15–16 (IEEE, 2017); http://doi.org/10.1109/GROUP4.2017.8082173.

    Google Scholar

    [40] Margetis J, Al-Kabi S, Du W, Dou W, Zhou Y Y et al. Si-based GeSn lasers with wavelength coverage of 2–3 μm and operating temperatures up to 180 K. ACS Photonics 5, 827–833 (2018). doi: 10.1021/acsphotonics.7b00938

    CrossRef Google Scholar

    [41] Millar R W, Dumas D C S, Gallacher K F, Jahandar P, MacGregor C et al. Mid-infrared light emission > 3 µm wavelength from tensile strained GeSn microdisks. Opt Express 25, 25374–25385 (2017). doi: 10.1364/OE.25.025374

    CrossRef Google Scholar

    [42] Stange D, von den Driesch N, Rainko D, Roesgaard S, Povstugar I et al. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells. Optica 4, 185–188 (2017). doi: 10.1364/OPTICA.4.000185

    CrossRef Google Scholar

    [43] Millar R W, Dumas D C S, Gallacher K, Jahandar P, Myronov M et al. Tensile strained GeSn mid-infrared light emitters. In Proceedings of the 14th International Conference on Group Ⅳ Photonics 49–50 (IEEE, 2017); http://doi.org/10.1109/GROUP4.2017.8082190.

    Google Scholar

    [44] Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L et al. Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence. Appl Phys Lett 105, 151109 (2014). doi: 10.1063/1.4898597

    CrossRef Google Scholar

    [45] Tsai C H, Chang G E. GeSn/Ge quantum well photodetectors for short-wave infrared photodetection: experiments and modeling. Proc SPIE 10231, 102310J (2017).

    Google Scholar

    [46] Huang B J, Lin J H, Cheng H H, Chang G E. GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms. Opt Lett 43, 1215–1218 (2018). doi: 10.1364/OL.43.001215

    CrossRef Google Scholar

    [47] Grant P C, Dou W, Alharthi B, Grant J M, Mosleh A et al. Comparison study of the low temperature growth of dilute GeSn and Ge. Jf Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 35, 061204 (2017).

    Google Scholar

    [48] Chen N L, Lin G Y, Zhang L, Li C, Chen S Y et al. Low-temperature formation of GeSn nanocrystallite thin films by sputtering Ge on self-assembled Sn nanodots on SiO2/Si substrate. Jpn J Appl Phys 56, 050301 (2017). doi: 10.7567/JJAP.56.050301

    CrossRef Google Scholar

    [49] Khiangte K R, Rathore J S, Schmidt J, Osten H J, Laha A et al. Wafer-scale all-epitaxial GeSn-on-insulator on Si(111) by molecular beam epitaxy. https://arxiv.org/pdf/1802.03150.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(10233) PDF downloads(3675) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint