一种高双折射低限制性损耗光子晶体光纤设计

赵丽娟,梁若愚,赵海英,等. 一种高双折射低限制性损耗光子晶体光纤设计[J]. 光电工程,2021,48(3):200368. doi: 10.12086/oee.2021.200368
引用本文: 赵丽娟,梁若愚,赵海英,等. 一种高双折射低限制性损耗光子晶体光纤设计[J]. 光电工程,2021,48(3):200368. doi: 10.12086/oee.2021.200368
Zhao L J, Liang R Y, Zhao H Y, et al. Design of a photonic crystal fiber with low confinement loss and high birefringence[J]. Opto-Electron Eng, 2021, 48(3): 200368. doi: 10.12086/oee.2021.200368
Citation: Zhao L J, Liang R Y, Zhao H Y, et al. Design of a photonic crystal fiber with low confinement loss and high birefringence[J]. Opto-Electron Eng, 2021, 48(3): 200368. doi: 10.12086/oee.2021.200368

一种高双折射低限制性损耗光子晶体光纤设计

  • 基金项目:
    国家自然科学基金资助项目(51607066, 61775057);河北省自然科学基金资助项目(E2019502177);中央高校基本科研业务费专项资金项目(2019MS085)
详细信息
    作者简介:
    通讯作者: 徐志钮(1979-),男,博士,副教授,主要从事分布式光纤传感及其在电气设备状态监测和故障诊断中的应用的研究。E-mail: wzcnjxx@sohu.com
  • 中图分类号: TN818

Design of a photonic crystal fiber with low confinement loss and high birefringence

  • Fund Project: National Natural Science Foundation of China (51607066, 61775057), the Natural Science Foundation of Hebei Province (E2019502177), and the Fundamental Research Funds for the Central Universities (2019MS085)
More Information
  • 本文设计了一种适用于长距离光纤通信的新型光子晶体光纤。该光纤包层内椭圆形和圆形空气孔呈交错排列,纤芯两侧为两个小椭圆空气孔。利用有限元分析方法对所设计光纤的传输特性进行分析并对其结构进行了优化,确定了最佳结构。结果表明,波长为1550 nm时,此新型光子晶体光纤在最佳结构下可提供高达3.51×10-2的高双折射和低至1.5×10-9 dB/m的限制性损耗。与现存的引入椭圆形空气孔的光子晶体光纤相比,本文中的光子晶体光纤的双折射系数有较大提高,限制性损耗系数降低了5个数量级。另外,本文还详细研究了光子晶体光纤的色散随光子晶体光纤结构的变化以及其布里渊增益特性,并分析了其可制造性。基于其高双折射和低限制性损耗特性,此种光纤可应用于长距离光纤通信系统。

  • Overview: Optical fiber communication is a system in which the light waves are used as the information carriers and the optical fibers are used as the transmission media. Optical fiber is more excellent than the transmission of cable and the microwave communication due to its wide transmission band, high anti-interference ability and low confinement loss, and has become the main transmission method. At the same time, with the development of communication technology, optical fiber communication systems have higher requirements for the performance of optical fibers. Traditional single-mode fibers can no longer meet the demands. Compared with conventional fibers, photonic crystal fibers (PCFs) have many unique characteristics, including no cut-off single mode transmission, highly tunable dispersion, excellent nonlinear effect, birefringence effect and so on. Therefore, PCFs have attracted considerable interests in recent years. In 2011, K. Yang proposed a PCF with elliptical air holes distributing on the inner rings. The birefringence of this PCF achieves 0.87×10-2, and the confinement loss is 0.01 dB/m. In 2016, the birefringence of the PCF designed by L. Wu reaches 2.21×10-2. In 2017, by introducing the elliptical air holes in the core, a birefringence of 3.41×10-2 and a dispersion of -608.93 ps·km-1·nm-1 was obtained by J. Liao. In 2019, the birefringence of the PCF with two elliptical air holes in the core proposed by Q. Liu is 1.4207×10-2, and the order of the confinement loss achieves 10-4 dB/m. However, the existing studies with simple arrangement of air holes in the cladding show poor asymmetry, affecting the further improvement of the properties such as the birefringence and the confinement loss, so it could not meet the rapidly growing demands for optical fiber communication.

    To fix the above problems, we proposed a novel PCF for long distance communication with crossly distributed elliptical and circular air holes sequences in the cross-section in this paper. The birefringence and confinement loss of the proposed PCF were systematically analyzed by using of the full vector finite element method. Then, we obtained the optical structure parameters by systematically numerical analysis and explored the Brillouin gain spectrum characteristics of the PCF. The results reveal that the proposed PCF offers an ultrahigh birefringence of 3.51×10-2 with the confinement loss as low as 1.5×10-9 dB/m for the optimal structure of the PCF at the wavelength of 1550 nm, and the Brillouin frequency shift of x- and y-polarization are about 10.15 GHz and 10.4 GHz respectively. In addition, the PCF proposed in this work may be helpful for applications in the field of fiber optical sensing, the polarization-maintaining fiber, and the long-distance transmission of optical signal.

  • 加载中
  • 图 1  光纤横截面

    Figure 1.  Cross section of the designed photonic crystal fiber

    图 2  η=0.2时光纤LP01模式模场分布和能量等值线分布图。(a), (b) x偏振轴;(c), (d) y偏振轴

    Figure 2.  The field distribution and energy contour of LP01 at 1550 nm with η=0.2. (a), (b) x-polarization; (c), (d) y-polarization

    图 3  光纤有效折射率随a的变化

    Figure 3.  Effective refractive index of the proposed PCF changes with the increase of a

    图 4  光纤双折射系数随a的变化

    Figure 4.  Birefringence of the proposed PCF changes with the increase of a

    图 5  不同η下PCF的双折射系数随波长的变化

    Figure 5.  The birefringence of the PCF with different η as a function of wavelength

    图 6  光纤色散随波长的变化

    Figure 6.  Dispersion of the optical fiber as a function of wavelength

    图 7  光纤限制性损耗随波长的变化。(a) x偏振轴;(b) y偏振轴

    Figure 7.  The confinement loss of the proposed PCF as a function of wavelength. (a) x-polarization; (b) y-polarization

    图 8  光子晶体光纤LP01模式的声场分布

    Figure 8.  The distribution of acoustic mode LP01 of the PCF

    图 9  光子晶体光纤的布里渊增益谱

    Figure 9.  Brillouin gain spectrum of the proposed PCF

    图 10  当圆空气孔直径(2b)有1%~2%的误差时双折射系数随波长的变化

    Figure 10.  Birefringence as a function of wavelength with 1%~2% variations of circular air holes diameter(2b)

    表 1  光纤结构及完美匹配层参数

    Table 1.  Parameters of the PCF structure and PML

    Parameter/unit Ʌ/μm b/μm r/μm d/μm
    Value 0.87 0.4 5.046 0.2
    下载: 导出CSV

    表 2  与现有光子晶体光纤的性能比较

    Table 2.  Comparison with the existing PCFs

    References L(λ)/(dB/m) B D/(ps·km-1·nm-1)
    Ref. [6] 0.01 0.87×10-2
    Ref. [8] 0.365 3.41×10-2 -399.98
    Ref. [12] 2.89×10-2 -600
    Ref. [14] 2×10-2 -200
    Ref. [15] 5×10-4 8×10-3
    Ref. [16] 1.17×10-4 2.54×10-2 -722.48
    Ref. [27] 10-3 1.98×10-2
    Ref. [28] 1.24×10-4 -100
    The designed PCF 1.5×10-9 3.51×10-2 -500
    下载: 导出CSV
  • [1]

    Steel M J, Osgood R M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers[J]. J Light Technol, 2001, 19(4): 495-503. doi: 10.1109/50.920847

    [2]

    王晓愚, 崔永兆, 毕卫红, 等. 基于拉曼光谱的光子晶体光纤孔内生长石墨烯层数控制方法的研究[J]. 光谱学与光谱分析, 2020, 40(12): 3659-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202012002.htm

    Wang X Y, Cui Y Z, Bi W H, et al. Research on control method of Graphene layers grown in air holes of photonic crystal fiber based on Raman spectroscopy[J]. Spectrosc Spect Anal, 2020, 40(12): 3659-3664. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202012002.htm

    [3]

    Robert P, Fourcade-Dutin C, Dauliat R, et al. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse[J]. Opt Lett, 2020, 45(15): 4148-4151. doi: 10.1364/OL.398614

    [4]

    魏方皓, 张祥军, 唐守锋. 基于表面等离子体共振的光子晶体光纤折射率传感器的设计与分析[J]. 半导体光电, 2020, 41(1): 35-38, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202001007.htm

    Wei F H, Zhang X J, Tang S F. Design and analysis of photonic crystal fiber refractive index sensor based on surface Plasmon resonance[J]. Semicond Optoelectron, 2020, 41(1): 35-38, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG202001007.htm

    [5]

    魏红彦, 裴小娜. 近红外零色散平坦全固态微结构光纤的设计[J]. 光通信技术, 2018, 42(10): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201810012.htm

    Wei H Y, Pei X N. Design of near-infrared zero-dispersion flattened all-solid microstructured optical fiber[J]. Opt Commun Technol, 2018, 42(10): 41-45. https://www.cnki.com.cn/Article/CJFDTOTAL-GTXS201810012.htm

    [6]

    Yang K Y, Chau Y F, Huang Y W, et al. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding[J]. J Appl Phys, 2011, 109(9): 093103. doi: 10.1063/1.3583560

    [7]

    武丽敏, 宋朋, 王静, 等. 一种高双折射高负平坦色散压缩型光子晶体光纤[J]. 红外与激光工程, 2016, 45(S1): S120001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1032.htm

    Wu L M, Song P, Wang J, et al. A squeezed lattice high negative dispersion and high birefringence photonic crystal fiber[J]. Infrared Laser Eng, 2016, 45(S1): S120001. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ2016S1032.htm

    [8]

    Liao J F, Huang T Y, Xiong Z Z, et al. Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion[J]. Optik, 2017, 135: 42-49. doi: 10.1016/j.ijleo.2017.01.054

    [9]

    Liu Q, Liu Q Y, Sun Y D, et al. A high-birefringent photonic quasi-crystal fiber with two elliptical air holes[J]. Optik, 2019, 184: 10-15. doi: 10.1016/j.ijleo.2019.03.017

    [10]

    刘旭安, 程和平, 焦铮. 双孔单元四边形晶格光子晶体光纤特性的研究[J]. 激光技术, 2019, 43(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201901010.htm

    Liu X A, Cheng H P, Jiao Z. Properties of regular-lattice photonic crystal fiber based on a double-hole unit[J]. Laser Technol, 2019, 43(1): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS201901010.htm

    [11]

    Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]. Sci Rep, 2020, 10(1): 21182. doi: 10.1038/s41598-020-77114-x

    [12]

    Liu M, Hou J Y, Yang X, et al. Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity[J]. Chin Phys B, 2018, 27(1): 014206. doi: 10.1088/1674-1056/27/1/014206

    [13]

    Yang T Y, Wang E L, Jiang H M, et al. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss[J]. Opt Express, 2015, 23(7): 8329-8337. doi: 10.1364/OE.23.008329

    [14]

    Sonne A, Ouchar A, Sonne K. Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber[J]. Optik, 2016, 127(1): 8-10. doi: 10.1016/j.ijleo.2015.09.061

    [15]

    Gao Y, Sima C, Cheng J, et al. Highly-birefringent and ultra-wideband low-loss photonic crystal fiber with rhombic and elliptical holes[J]. Opt Commun, 2019, 450: 172-175. doi: 10.1016/j.optcom.2019.06.004

    [16]

    Prajapati Y K, Kumar R, Singh V. Design of a photonic crystal Fiber for dispersion compensation and sensing applications using modified air holes of the cladding[J]. Braz J Phys, 2019, 49(5): 745-751. doi: 10.1007/s13538-019-00686-1

    [17]

    Li Y Q, Zhang L X, Fan H B, et al. A self-heterodyne detection Rayleigh Brillouin optical time domain analysis system[J]. Opt Commun, 2018, 427: 190-195. doi: 10.1016/j.optcom.2018.06.054

    [18]

    荣耕辉, 伊小素. 一种新型高双折射光子晶体光纤的特性研究[J]. 半导体光电, 2018, 39(2): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201802014.htm

    Rong G H, Yi X S. Investigation on a new high birefringence photonic crystal fiber[J]. Semicond Optoelectron, 2018, 39(2): 211-215. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201802014.htm

    [19]

    张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633

    Zhang X D, Yuan M M, Chang M, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electron Eng, 2018, 45(5): 170633. doi: 10.12086/oee.2018.170633

    [20]

    Chen N, Zhang X D, Nie F K, et al. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure[J]. J Mod Opt, 2018, 65(12): 1459-1465. doi: 10.1080/09500340.2018.1454526

    [21]

    杨天宇, 姜海明, 王二垒, 等. 一种近红外波段的高双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3): 350-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201603016.htm

    Yang T Y, Jiang H M, Wang E L, et al. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. J Infrared Millim Waves, 2016, 35(3): 350-354. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201603016.htm

    [22]

    潘宇航, 路元刚, 彭楗钦, 等. 光子晶体光纤的布里渊增益谱特性[J]. 光学学报, 2019, 39(6): 0619001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906034.htm

    Pan Y H, Lu Y G, Pen J Q, et al. Brillouin gain spectrum characteristics of photonic crystal fibers[J]. Acta Opt Sin, 2019, 39(6): 0619001. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201906034.htm

    [23]

    Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601

    [24]

    徐志钮, 胡宇航, 赵丽娟, 等. 基于改进二次多项式拟合的布里渊频移快速高精度提取算法[J]. 光谱学与光谱分析, 2020, 40(3): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003039.htm

    Xu Z N, Hu Y H, Zhao L J, et al. Fast and highly accurate Brillouin frequency shift extracted algorithm based on modified quadratic polynomial fit[J]. Spectrosc Spect Anal, 2020, 40(3): 842-848. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202003039.htm

    [25]

    徐志钮, 胡宇航, 赵丽娟, 等. 基于单斜坡法的光电复合海缆温度、应变快速测量方法[J]. 电力自动化设备, 2020, 40(5): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202005028.htm

    Xu Z N, Hu Y H, Zhao L J, et al. Rapid temperature and strain measurement method for optic-electric composite submarine cable based on slope-assisted method[J]. Electric Power Autom Equip, 2020, 40(5): 202-208. https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS202005028.htm

    [26]

    盛勇, 陆驹, 姚高峰, 等. 椭圆空气孔矩形结构光子晶体光纤的高双折射及限制损耗分析[J]. 光子学报, 2014, 43(S1): 0106008. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB2014S1009.htm

    Sheng Y, Lu J, Yao G F, et al. Analysis of high birefringent and confinement loss of elliptical air-holes rectangular photonic crystal fiber[J]. Acta Photon Sin, 2014, 43(S1): 0106008. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB2014S1009.htm

    [27]

    Zhang W, Li S G, Bao Y J, et al. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice[J]. Opt Commun, 2016, 359: 448-454. doi: 10.1016/j.optcom.2015.09.079

    [28]

    潘超, 周俊萍, 倪海滨. 胶体光子晶体修饰光纤及相对湿度检测应用[J]. 光电工程, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168

    Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]. Opto-Electron Eng, 2018, 45(9): 180168. doi: 10.12086/oee.2018.180168

    [29]

    Sun C Y, Wang W C, Jia H Z. A squeezed photonic crystal fiber for residual dispersion compensation with high birefringence over S+C+L+U wavelength bands[J]. Opt Commun, 2020, 458: 124757. doi: 10.1016/j.optcom.2019.124757

  • 加载中

(10)

(2)

计量
  • 文章访问数:  7195
  • PDF下载数:  855
  • 施引文献:  0
出版历程
收稿日期:  2020-10-12
修回日期:  2021-02-05
刊出日期:  2021-03-15

目录

/

返回文章
返回