防潮密封型光纤连接器

张新立,唐群植,伍浩成,等. 防潮密封型光纤连接器[J]. 光电工程,2020,47(12):200067. doi: 10.12086/oee.2020.200067
引用本文: 张新立,唐群植,伍浩成,等. 防潮密封型光纤连接器[J]. 光电工程,2020,47(12):200067. doi: 10.12086/oee.2020.200067
Zhang X L, Tang Q Z, Wu H C, et al. Moisture-proof seal optical fiber connector[J]. Opto-Electron Eng, 2020, 47(12): 200067. doi: 10.12086/oee.2020.200067
Citation: Zhang X L, Tang Q Z, Wu H C, et al. Moisture-proof seal optical fiber connector[J]. Opto-Electron Eng, 2020, 47(12): 200067. doi: 10.12086/oee.2020.200067

防潮密封型光纤连接器

  • 基金项目:
    广西创新驱动发展专项(科技重大专项)资助项目(桂科AA18118032)
详细信息
    作者简介:
    通讯作者: 黎志刚(1985-),男,硕士,工程师,主要从事光电子技术与光纤无源器件研究及其应用、激光脉冲光源、激光功率能量检测等方面的研究。E-mail:jx_lizhigang@163.com
  • 中图分类号: TN29

Moisture-proof seal optical fiber connector

  • Fund Project: Supported by Guangxi Innovation Driven Development Project (Major Science and Technology Projects: GuiKe AA18118032)
More Information
  • 针对高功率光纤激光系统中光纤对接端面产生水雾凝结的问题,分析出产生该问题最重要因素为连接器不具备防潮密封性能,对其结构装配及使用过程进行剖析,同时指出其防潮密封缺陷原因,进行技术创新与工艺改进,设计了防潮密封型光纤连接器。介绍了该新型连接器防潮密封原理及结构组成;重点对该新型光纤连接器性能进行全面测试,包括浸水试验、恒定湿热试验、在线运行应用验证等。试验结果表明,其插入损耗小于0.2 dB,防潮密封性能良好,取得较好的预期效果。

  • Overview: In the application of high-power laser optical fiber transmission and measurement, the transmission power of optical fiber is higher. With the laser disconnected, the ceramic insert core is cooled, and the water vapor in the air will condense at the end face of the connector. It will increase the fiber splicing loss and even damage the fiber end face. It is necessary to fundamentally solve the problem of water mist condensation on the end face of the connector. The most important factor of water mist condensation is that the traditional optical fiber connector does not have moisture-proof sealing performance. This paper analyzes the structure assembly and use process of the connector, and points out five defects of the moisture-proof seal. Specifically, there is no sealing process or moisture-proof sealing treatment in the assembly process. In addition, when the connector is used for the butt joint with flange, no moisture-proof sealing process has been carried out. It causes the dust and water vapor in the air to enter the surrounding and end face of the ceramic insert core. So, the internal humidity and cleanliness of the connector are not up to standard, which brings serious consequences to the field of optical transmission and optical measurement. Through technological innovation and process improvement, a new moisture-proof seal fiber connector is designed and completed without changing the original structure and size of the optical fiber connector. The principle and structure of the moisture-proof seal of the new connector are introduced. The main performances of the new connector are tested comprehensively, including the main optical performance test, immersion test, constant damp heat test, and online application test. The experimental results show that the new connector has better moisture-proof seal with IL less than 0.2 dB. After immersion test, the insertion loss index of the connector also meets the expected requirements. The main optical parameters meet the application requirements. The new moisture-proof sealing connector solves the problem of water mist condensation on the end face of the connector, and can be used in high power fiber laser system for a mid-long term, that will have good prospects. In the next step, we will continue to innovate and introduce this innovative technology and improved process into the single polarization fiber connector and the polarization-maintaining fiber connector. We will design and complete the moisture-proof sealing single-polarization optical fiber connector and moisture-proof sealing polarization-maintaining fiber connector to meet the new application requirements of the fiber laser system.

  • 加载中
  • 图 1  传统普通单模光纤连接器结构图

    Figure 1.  Structure of traditional single-mode fiber connector

    图 2  传统普通单模光纤连接器装配图

    Figure 2.  Assembly drawing of single-mode fiber connector

    图 3  防潮密封型普通单模光纤连接器结构装配图

    Figure 3.  Structure of moisture-proof seal fiber connector

    图 4  防潮密封型光纤跳线插入损耗测量框图。(a)输入光功率测量P0 (dBm);(b)输出光功率测量P1 (dBm)

    Figure 4.  IL measurement of moisture-proof seal fiber connector. (a) Input power P0 (dBm); (b) Output power P1 (dBm)

    图 5  组合体置于室温水中浸没试验。 (a) 普通组合体浸没试验; (b) 新工艺组合体浸没试验

    Figure 5.  Fiber connector submerging test. (a) Immersion test of traditional connector and flange; (b) Immersion test of moisture-proof seal connector and flange

    图 6  普通组合体浸入水中试验后光纤端面检测结果

    Figure 6.  Test results of traditional connector end face

    图 7  新工艺组合体浸入水中试验后光纤端面检测结果

    Figure 7.  Test results of moisture-proof seal connector end face

    图 8  防潮密封型光纤跳线与法兰连接关系

    Figure 8.  Butt joint of moisture-proof seal connector and flange

    图 9  新工艺组合体恒定湿热试验后光纤端面检测结果

    Figure 9.  New connector end face detection after constant temperature and humidity test

    图 10  防潮密封型光纤跳线拷机试验连接

    Figure 10.  Moisture-proof seal connector toaster test

    图 11  新工艺组合体拷机试验后光纤端面检测结果

    Figure 11.  New connector end face detection after toaster test

    图 12  在线应用90天后各类光纤端面检测结果

    Figure 12.  Connector end face detection after 90 days online application

    表 1  测试使用仪器设备及环境条件

    Table 1.  Test instruments and environmental conditions

    测试条件 参数
    光源 功率/dBm 10.31
    波长/nm 1053
    功率计 PM121D (数字表头、带光电探头)
    待测跳线 G.652光纤ϕ3.0 mm单芯(1 m)防潮密封
    测试温度 23.5 ℃(室温)
    相对湿度/% 50
    下载: 导出CSV

    表 2  防潮密封型光纤跳线IL测量结果

    Table 2.  IL of moisture-proof seal fiber connector  dB

    序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
    IL 0.06 0.09 0.12 0.08 0.14 0.11 0.07 0.09 0.08 0.17 0.15 0.07 0.06 0.15 0.16 0.10 0.19 0.11 0.09 0.08
    下载: 导出CSV

    表 3  浸水试验后跳线IL测量结果

    Table 3.  Fiber connector IL after immersion test

    跳线及试验时间 插损值/(dB)
    普通跳线(1A), (1B)、浸水30 min 0.93
    普通跳线(1A), (1B)、浸水1 h 2.35
    新工艺跳线(2A), (2B)、浸水30 min 0.09
    新工艺跳线(3A), (3B)、浸水24 h 0.11
    下载: 导出CSV
  • [1]

    童维军, 杨晨, 刘彤庆, 等.光纤传感用新型特种光纤的研究进展与展望[J].光电工程, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243

    Tong W J, Yang C, Liu T Q, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243

    [2]

    孙志红, 李平, 赵润昌, 等.高功率激光装置打靶精度测试技术[J].强激光与粒子束, 2011, 23(8): 2121-2124. doi: 10.3788/HPLPB20112308.2121

    Sun Z H, Li P, Zhao R C, et al. Technology of target positioning precision measurement of high power laser system[J]. High Power Laser and Particle Beams, 2011, 23(8): 2121-2124. doi: 10.3788/HPLPB20112308.2121

    [3]

    朱莉, 徐胜勇.基于OpenCV的光纤端面检测系统研究[J].光通信研究, 2015(1): 28-30, 38. doi: 10.13756/j.gtxyj.2015.01.010

    Zhu L, Xu S Y. Research on an OpenCV-based optical fiber end detection system[J]. Study on Optical Communications, 2015(1): 28-30, 38. doi: 10.13756/j.gtxyj.2015.01.010

    [4]

    Xu Y X, Zhu R H, Chen L. Measurement of apex offsets for fiber connector end faces[J]. Semiconductor Photonics and Technology, 2006, 12(4): 270-275. doi: 10.1016/S1002-0160(06)60023-4

    [5]

    伏燕军, 邹文栋, 肖慧荣, 等.光纤连接器端面检测技术的研究[J].激光杂志, 2005, 26(3): 70-71. doi: 10.3969/j.issn.0253-2743.2005.03.032

    Fu Y J, Zou W D, Xiao H R, et al. The research of measuring technology for fiber connector endface[J]. Laser Journal, 2005, 26(3): 70-71. doi: 10.3969/j.issn.0253-2743.2005.03.032

    [6]

    黄欢, 孙博, 曾声奎, 等.光纤连接器的应用环境条件和失效机理分析[J].机电元件, 2012, 32(2): 32-39. doi: 10.3969/j.issn.1000-6133.2012.02.009

    Huang H, Sun B, Zeng S K, et al. Typical application environmental conditions and failure mechanisms analysis of fiber optic connectors[J]. Electromechanical Components, 2012, 32(2): 32-39. doi: 10.3969/j.issn.1000-6133.2012.02.009

    [7]

    李华强.军用光纤连接器技术近期发展动向[J].光通信技术, 2015, 39(3): 21-23. doi: 10.13921/j.cnki.issn1002-5561.2015.03.007

    Li H Q. Recent trend of military optical fiber connector technology[J]. Optical Communication Technology, 2015, 39(3): 21-23. doi: 10.13921/j.cnki.issn1002-5561.2015.03.007

    [8]

    Duan J A, Liu D F, Zhong J. Influences of polishing on return loss of optical fiber connectors[J]. Journal of Central South University of Technology, 2005, 12(3): 320-323. doi: 10.1007/s11771-005-0153-3

    [9]

    黄蓓.光纤连接器使用操作规范探讨[J].电子产品可靠性与环境试验, 2011, 29(5): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKH201106010.htm

    Huang B. Handling and operation rules of optical fiber connectors[J]. Electronic Product Reliability and Environmental Testing, 2011, 29(5): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKH201106010.htm

    [10]

    Horwitz D. COTS fiber optic connectors for harsh environments[C]//The Optical Fiber Communication Conference 2000, Baltimore, 2000: 3.

    [11]

    刘君文, 何兴道.光纤连接器制作中的端面处理技术[J].光纤与电缆及其应用技术, 2007(3): 22-25. doi: 10.3969/j.issn.1006-1908.2007.03.007

    Liu J W, He X D. Endface treatment technology in fabrication of fiber optic connector[J]. Optical Fiber & Electric Cable, 2007(3): 22-25. doi: 10.3969/j.issn.1006-1908.2007.03.007

    [12]

    李华强, 黄媛媛, 李太华, 等.大功率光纤连接器插损测试技术研究[J].光通信技术, 2010, 34(2): 46-48. doi: 10.3969/j.issn.1002-5561.2010.02.015

    Li H Q, Huang Y Y, Li T H, et al. Research on the inserting loss of fiber connector with high power[J]. Optical Communication Technology, 2010, 34(2): 46-48. doi: 10.3969/j.issn.1002-5561.2010.02.015

  • 加载中

(12)

(3)

计量
  • 文章访问数:  4169
  • PDF下载数:  626
  • 施引文献:  0
出版历程
收稿日期:  2020-03-02
修回日期:  2020-07-22
刊出日期:  2020-12-15

目录

/

返回文章
返回