量子点白光LED光谱拟合方法的研究

刘远海,刘文,何思宇,等. 量子点白光LED光谱拟合方法的研究[J]. 光电工程,2020,47(6):190288. doi: 10.12086/oee.2020.190288
引用本文: 刘远海,刘文,何思宇,等. 量子点白光LED光谱拟合方法的研究[J]. 光电工程,2020,47(6):190288. doi: 10.12086/oee.2020.190288
Liu Y H, Liu W, He S Y, et al. Study on spectral fitting method of quantum dot white LED[J]. Opto-Electron Eng, 2020, 47(6): 190288. doi: 10.12086/oee.2020.190288
Citation: Liu Y H, Liu W, He S Y, et al. Study on spectral fitting method of quantum dot white LED[J]. Opto-Electron Eng, 2020, 47(6): 190288. doi: 10.12086/oee.2020.190288

量子点白光LED光谱拟合方法的研究

  • 基金项目:
    国家基金委—深圳市联合基金重点支持资助项目(U1613212)
详细信息
    作者简介:
    通讯作者: 刘文(1968-),男,博士,副教授,主要从事半导体工艺及应用技术的研究。E-mail:liuwen@szu.edu.cn
  • 中图分类号: O433.4

Study on spectral fitting method of quantum dot white LED

  • Fund Project: Supported by National Fund Committee-Shenzhen Unite Fund Key Support Project (U1613212)
More Information
  • 量子点材料具有发光光谱窄、发光波长可调及荧光量子产率高等特点,其制成的发光器件在提升色域方面更具潜力。本文介绍了一种由蓝光LED激发CdSe红、绿光量子点并结合表色系统计算方法配得白光的计算方法。经多次实验确定,红、绿光量子点与胶水配比为(1:60)和(1:10),胶量测试范围为1.4 μL~2.2 μL和3.0 μL~5.0 μL。采用传统LED制作方式和分层结构制得样品,测试此胶量范围对蓝光的吸收、转化比率,经Matlab拟合得到胶量与吸收、转化率的函数关系。取上述测试胶量范围形成的白光区域点(0.34,0.3),得到红、绿光量子点胶量为1.9 μL和4.55 μL,根据光谱计算公式得到对应的理论光谱。再根据上述胶量制作验证样品,测试得到色坐标点为(0.3409, 0.2992)且对应的光谱与理论光谱也基本重合。

  • Overview: Quantum dot material is a new semiconductor luminescent material which has the characteristics of narrow luminescent spectrum, adjustable luminescent wavelength and high quantum yield. Because of its narrow fluorescence spectrum, the light-emitting device is very helpful to improve the color gamut and saturation in the backlight field. Quantum dot materials are used as backlight devices to improve the color gamut and saturation which need to match the white light to meet the requirements through the principle of three primary colors. At present, there are many studies on the fitting method of white light spectrum, but it is not verified by the quality ratio of fluorescent materials in actual production. Based on the CIE 1931 XYZ surface color system, a new white light spectrum fitting method is developed in this paper.

    The ratio of red and green QDs to glue was (1: 60) and (1: 10). The test range of the glue content was 1.4 μL~2.2 μL and 3.0 μL~5.0 μL. In the experiment, the traditional LED manufacturing method is used and the red green quantum dots are excited by the characteristics of blue light short wavelength and high energy to obtain the red green blue three colors which are mixed into white light. At the same time, due to the more stable nature of red quantum dots, the layered structure of red quantum dots under green quantum dots is adopted. Make samples according to the above-mentioned manufacturing method, test the absorption and conversion ratio of different samples to blue light, get the functional relationship between glue amount and absorption and conversion ratio through Matlab fitting, and then substitute it into the calculation formula to get the white light area. In the experiment, it is found that the amount of red-green quantum dots with layered structure will affect each other's absorption conversion; therefore, when fitting the functional relationship between the amount of glue and the absorption conversion, it is necessary to take the amount of red-green quantum dots as an independent variable at the same time.

    According to the spectral fitting method, the white light region of each sample in the color coordinate is calculated, and a point (0.34, 0.3) in the region is taken. The corresponding red and green quantum dots are 1.9 μL and 4.55 μL by the inverse use of the spectral fitting method, so the corresponding theoretical spectrum is obtained. Then, according to the above-mentioned amount of glue, the white light spectrum is obtained, which basically coincides with the theoretical spectrum, and the color coordinate points (0.3409, 0.2992) obtained from the actual spectrum are also basically close. The fitting method of white light spectrum introduced in this paper is combined with the actual production and verified, which has a certain reference value for the preparation of white light of photoluminescent products.

  • 加载中
  • 图 1  实验结构图

    Figure 1.  Structure simulated in this work

    图 2  (a) 蓝光芯片相对光谱;(b)绿光量子点相对光谱;(c)红光量子点相对光谱

    Figure 2.  (a) Blue chip relative spectrum; (b) Green quantum dots relative spectrum; (c) Red quantum dots relative spectrum

    图 3  (a) 红光量子点吸收率拟合曲线;(b)红光量子点转化率拟合曲线;(c) 绿光量子点吸收率拟合曲线;(d)绿光量子点转化率拟合曲线

    Figure 3.  (a) Red quantum dot absorption rate fitting curve; (b) Red quantum dot conversion rate fitting curve; (c) Green quantum dot absorption rate fitting curve; (d) Green quantum dot conversion rate fitting curve

    图 4  色坐标计算区域

    Figure 4.  Color coordinate calculation area

    图 5  预测光谱与实际光谱

    Figure 5.  Predicted and actual spectral

    图 6  (a) 红光量子点两次加热影响;(b)凹、凸面样品示意图;(c)凹凸面对于蓝光出光影响

    Figure 6.  (a) Twice heating effect of red quantum dot; (b) Concave and convex sample schematic; (c) The concave and convex surface affects the blue light

    图 7  (a) 红光量子点吸收率拟合曲面;(b)红光量子点转换率率拟合曲面;(c)绿光量子点吸收率拟合曲面;(d)绿光量子点转换率率拟合曲面

    Figure 7.  (a) Red quantum dot absorption rate fitting surface; (b) Red quantum dot conversion rate fitting surface; (c) Green quantum dot absorption rate fitting surface; (d) Green quantum dot conversion rate fitting surface

    图 8  色坐标计算区域

    Figure 8.  Color coordinate calculation area

    图 9  (a) 预测与实际光谱;(b)预测与实际色坐标点;(c)样品点亮前后效果图

    Figure 9.  (a) Prediction and actual spectrum; (b) Prediction and actual coordinates; (c) Sample before and after lighting

    表 1  不同量子点胶量的吸收和转化率

    Table 1.  Absorption and conversion of different quantum dot gels

    红光量子点胶量/μL 1.4 1.6 1.8 2.0 2.2
    红光量子点吸收率 0.5420 0.5611 0.5826 0.5968 0.6022
    红光量子点转化率 0.1715 0.1815 0.2075 0.2191 0.2282
    绿光量子点胶量/μL 3.0 3.5 4.0 4.5 5.0
    绿光量子点吸收率 0.7327 0.7639 0.7865 0.8055 0.8257
    绿光量子点转化率 0.2085 0.21543 0.2077 0.2038 0.2030
    下载: 导出CSV
  • [1]

    季洪雷, 周青超, 潘俊, 等.量子点液晶显示背光技术[J].中国光学, 2017, 10(5): 666-680. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201705013

    Ji H L, Zhou Q C, Pan J, et al. Advances and prospects in quantum dots based backlights[J]. Chinese Optics, 2017, 10(5): 666-680. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201705013

    [2]

    Smet P F, Parmentier A B, Poelman D. Selecting conversion phosphors for white light-emitting diodes[J]. Journal of the Electrochemical Society, 2011, 158(6): R37-R54. doi: 10.1149/1.3568524

    [3]

    王巍, 李一, 宁平凡, 等.广色域钙钛矿量子点/荧光粉转换白光LED[J].发光学报, 2018, 39(5): 627-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201805004

    Wang W, Li Y, Ning P F, et al. Perovskite quantum dot/powder phosphor converted white light LEDs with wide color gamut[J]. Chinese Journal of Luminescence, 2018, 39(5): 627-632. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201805004

    [4]

    柳杨, 刘志伟, 卞祖强, 等.高效、稳定Ⅱ-Ⅵ族量子点发光二极管(LED)的研究进展[J].无机化学学报, 2015, 31(9): 1751-1760. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201509007

    Liu Y, Liu Z W, Bian Z Q, et al. Research progress on high-efficiency and stable Ⅱ-Ⅵ groug quantum-dot light-emitting diodes[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(9): 1751-1760. http://d.old.wanfangdata.com.cn/Periodical/wjhxxb201509007

    [5]

    Wang R F, Zhang J L, Xu X M, et al. White LED with high color rendering index based on Ca8Mg(SiO4)4Cl2: Eu2+ and ZnCdTe/CdSe quantum dot hybrid phosphor[J]. Materials Letters, 2012, 84(1): 24-26. https://www.researchgate.net/publication/257009866_White_LED_with_high_color_rendering_index_based_on_Ca8MgSiO44Cl2Eu2_and_ZnCdTeCdSe_quantum_dot_hybrid_phosphor?_sg=a8rqpXXU5qKatzJC6BNbuUrp2xF_EjgCIsG2zfdcOAsAOvXHk2Clg0dIQzNzAiVeONQMhDLSQel1Iu8

    [6]

    Valcheva E, Yordanov G, Yoshimura H, et al. Low temperature studies of the photoluminescence from colloidal CdSe nanocrystals prepared by the hot injection method in liquid paraffin[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 461: 158-166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94d26cebbe25449c5df0672ac1ec5f94

    [7]

    Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23. doi: 10.1038/nphoton.2012.328

    [8]

    Ning P F, Zhang C Y, Liu J G, et al. Photoluminescence and thermal stability of Mn2+-doped CdSe/CdS/ZnS quantum dots[C]//Proceedings of the 2016 13th China International Forum on Solid State Lighting, 2016: 63-65.https://www.researchgate.net/publication/312114505_Photoluminescence_and_thermal_stability_of_Mn_2_-doped_CdSeCdSZnS_quantum_dots

    [9]

    Jain A, Voznyy O, Hoogland S, et al. Atomistic design of CdSe/CdS core-shell quantum dots with suppressed auger recombination[J]. Nano Letters, 2016, 16(10): 6491-6496. doi: 10.1021/acs.nanolett.6b03059

    [10]

    Gutsev L G, Ramachandran B R, Gutsev G L. Pathways of growth of CdSe nanocrystals from nucleant (CdSe)34 clusters[J]. The Journal of Physical Chemistry C, 2018, 122(5): 3168-3175. doi: 10.1021/acs.jpcc.7b12716

    [11]

    Kurochkin N S, Katsaba A V, Ambrozevich S A, et al. Energy transfer in hybrid systems composed of TPD and CdSe/CdS/ZnS colloidal nanocrystals[J]. Journal of Luminescence, 2018, 194: 530-534. doi: 10.1016/j.jlumin.2017.11.001

    [12]

    齐永莲, 王丹, 邱云, 等.超高色域图案化量子点彩膜的研究[J].液晶与显示, 2017, 32(3): 169-176. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703002

    Qi Y L, Wang D, Qiu Y, et al. Ultro-high color gamut and patterned color filter based on quantum dot photoresist[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(3): 169-176. http://d.old.wanfangdata.com.cn/Periodical/yjyxs201703002

    [13]

    Wang Y, Li X M, Song J Z, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Advanced Materials, 2015, 27(44): 7101-7108. doi: 10.1002/adma.201503573

    [14]

    Song J Z, Li J H, Li X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. doi: 10.1002/adma.201502567

    [15]

    刘选福.蓝光光谱宽度及荧光粉配比对白光性能的影响研究[D].大连: 大连工业大学, 2017.

    Liu X F. Research on the effect of spectral width of blue light and phosphor ratios on the optical performance of white light[D]. Dalian: Dalian Polytechnic University, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10152-1018021091.htm

    [16]

    唐爱伟, 滕枫, 王元敏, 等. Ⅱ-Ⅵ族半导体量子点的发光特性及其应用研究进展[J].液晶与显示, 2005, 20(4): 302-308. doi: 10.3969/j.issn.1007-2780.2005.04.008

    Tang A W, Teng F, Wang Y M, et al. Luminescent characteristics and applied research progress of Ⅱ-Ⅵ semiconductor quantum dots[J]. Chinese Journal of Liquid Crystals and Displays, 2005, 20(4): 302-308. doi: 10.3969/j.issn.1007-2780.2005.04.008

    [17]

    Fang Z L. Semiconductor Lighting Technology[M]. Beijing: Publishing House of Electronics Industry, 2009: 19-26.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  7276
  • PDF下载数:  2349
  • 施引文献:  0
出版历程
收稿日期:  2019-05-29
修回日期:  2019-12-24
刊出日期:  2020-06-01

目录

/

返回文章
返回