雾对基于可见光的车辆定位性能的研究

张颖,杨晶,杨玉峰. 雾对基于可见光的车辆定位性能的研究[J]. 光电工程,2020,47(4):190661. doi: 10.12086/oee.2020.190661
引用本文: 张颖,杨晶,杨玉峰. 雾对基于可见光的车辆定位性能的研究[J]. 光电工程,2020,47(4):190661. doi: 10.12086/oee.2020.190661
Zhang Y, Yang J, Yang Y F. The research on fog's positioning performance of vehicles based on visible light[J]. Opto-Electron Eng, 2020, 47(4): 190661. doi: 10.12086/oee.2020.190661
Citation: Zhang Y, Yang J, Yang Y F. The research on fog's positioning performance of vehicles based on visible light[J]. Opto-Electron Eng, 2020, 47(4): 190661. doi: 10.12086/oee.2020.190661

雾对基于可见光的车辆定位性能的研究

  • 基金项目:
    国家自然科学基金青年资助项目(61405157);陕西省教育厅自然科学基金资助项目(17JK0569);陕西省重点计划产业创新链项目(2020ZDLGY05-02)
详细信息
    作者简介:
    通讯作者: 杨晶(1992-),女,硕士研究生,主要从事典型天气下可见光通信与定位技术的研究。E-mail:1285935272@qq.com
  • 中图分类号: TN929.1

The research on fog's positioning performance of vehicles based on visible light

  • Fund Project: Supported by National Natural Science Foundation of China (61405157), Natural Science Foundation of Shaanxi Provincial Department of Education (17JK0569), and Key Industry Innovation Chain Project of Shaanxi Province(2020ZDLGY05-02)
More Information
  • 分析雾环境下利用LED交通灯进行车辆定位的性能,讨论了接收角度、道路宽度、雾环境下接收端信噪比等对车辆定位范围的影响。仿真结果表明:信号最佳接收角度为25°;车辆距离LED交通灯20 m之内时,道路宽度对信号的接收功率影响较大;在靠近交通灯处,车辆位于第二车道上的定位距离比车辆位于第一车道的定位距离少2.2 m;晚间接收端的信噪比优于白天,晚间的定位范围大于白天;与晴朗天气相比,雾天信噪比下降较大,将极大影响车辆的可定位范围,因此为保证安全驾驶,车辆在雾天行驶过程中需要更多的制动时间。

  • Overview: The intelligent urban transportation system is an important direction for the development of urban road traffic in the future. It mainly uses the communication between transportation infrastructure and vehicles to build a safe, convenient and green intelligent information platform. Intelligent urban transportation system based on visible light communication has LED traffic lights and vehicle lighting. It can not only realize communication between infrastructure and vehicles, and between vehicles, but also obtain traffic road condition information in real time and accurately obtain vehicle position information. It is of great significance to carry out intelligent highway construction, promoting road network management and vehicle coordination. However, the outdoor atmospheric channel has a great influence on the intelligent urban transportation system based on visible light communication. A large amount of small water droplets or dust particles contained in the air will scatter or absorb the LED beam, causing loss of optical power. Many scholars at home and abroad are studying the communication performance of visible light in atmospheric channels, which lays a foundation for vehicle positioning using LED traffic lights. However, the positioning performance between outdoor LED traffic lights and vehicles in typical weather still needs further study. In this paper, the influence of fog on the vehicle positioning performance using visible light is studied. The influence of the receiving angle on the positioning range is analyzed, and the vertical angle is 45°, 55°, 65°. When the receiver receives a change in angle, the optimal receiving angle for the visible light is determined. By comparing the receiving power of the vehicle in different lanes, it can be seen that the road width has a great influence on the positioning performance within 20 m of traffic lights. The signal-to-noise ratio of the receiver at night is better than during the day under the same visibility. The positioning range of the vehicle at night can be greater than during the daytime. By comparing different concentrations of fog and sunny weather, it can be seen that fog has a greater influence on vehicle positioning based on visible light. Therefore, in order to ensure safe driving in the intelligent urban transportation system, the influence of the weather environment on the positioning distance should be considered when performing visible light vehicle positioning.

  • 加载中
  • 图 1  LED交通灯定位系统模型

    Figure 1.  LED traffic light position system model

    图 2  传输衰减与能见度的关系

    Figure 2.  Relationship between transmission attenuation and visibility

    图 3  接收角度与光信号水平传输距离的关系

    Figure 3.  Relationship between receiving angle and horizontal transmission distance of optical signal

    图 4  接收功率与光信号水平传输距离的关系

    Figure 4.  Relationship between received power and horizontal transmission distance of optical signal

    图 5  白天不同能见度情况下信噪比和定位距离之间的关系。

    Figure 5.  Show the relationship between signal-to-noise ratio and positioning distance for different visibility during the day.

    图 6  夜晚不同能见度情况下信噪比和定位距离之间的关系。

    Figure 6.  Show the relationship between signal-to-noise ratio and positioning distance for different visibility at night.

    表 1  雾的等级与水平能见度的关系

    Table 1.  Relationship between fog level and horizontal visibility

    等级 水平能见度/m
    0(浓雾) < 50
    1(大雾) 50~200
    2(中雾) 200~500
    3(轻雾) 500~1000
    4(薄雾) 1000~2000
    下载: 导出CSV

    表 2  系统参数

    Table 2.  System parameters

    参数 数值
    LED波长/nm 525
    LED功率半角/(°) 15
    接收机最大视角/(°) 25
    透镜折射率 1.7
    光电感应面积/cm2 1
    光电转换速率 0.35
    平均发射功率/W 0.314
    LED灯高度/m 5.5
    发射角度/(°) 30
    道路宽度/m 7
    光电探测器高度/m 1
    绿灯坐标 (0, 3, 5.5)
    下载: 导出CSV
  • [1]

    Dang Q H, Yoo M. Handover procedure and algorithm in vehicle to infrastructure visible light communication[J]. IEEE Access, 2017, 5: 26466-26475. doi: 10.1109/ACCESS.2017.2771199

    [2]

    Komine T, Nakagawa M. Fundamental analysis for visible-light communication system using LED lights[J]. IEEE Transactions on Consumer Electronics, 2004, 50(1): 100-107. doi: 10.1109/TCE.2004.1277847

    [3]

    丁德强, 柯熙政, 李建勋. VLC系统的光源布局设计与仿真研究[J].光电工程, 2007, 34(1): 131-134. doi: 10.3969/j.issn.1003-501X.2007.01.030

    Ding D Q, Ke X Z, Li J X. Design and simulation on the layout of lighting for VLC system[J]. Opto-Electronic Engineering, 2007, 34(1): 131-134. doi: 10.3969/j.issn.1003-501X.2007.01.030

    [4]

    Zhuang Y, Hua L C, Qi L N, et al. A survey of positioning systems using visible LED lights[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 1963-1988.

    [5]

    龙科军, 李峰, 高志波.雾天高速公路路况监测预警系统研究[J].交通科技, 2016(3): 183-186. doi: 10.3963/j.issn.1671-7570.2016.03.058

    Long K J, Li F, Gao Z B. Study of foggy highway traffic monitoring and warning system[J]. Transportation Science & Technology, 2016(3): 183-186. doi: 10.3963/j.issn.1671-7570.2016.03.058

    [6]

    刘景龙.基于室外可见光LED交通灯的无线通信系统研究[D].哈尔滨: 哈尔滨工程大学, 2013: 1-65.

    Liu J L. The analysis of outdoor wireless communication system based on the LED visible light[D]. Harbin: Harbin Engineering University, 2013: 1-65.http://cdmd.cnki.com.cn/Article/CDMD-10217-1014131845.htm

    [7]

    Elamassie M, Karbalayghareh M, Miramirkhani F, et al. Effect of fog and rain on the performance of vehicular visible light communications[C]//Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 2018: 1-6.

    [8]

    秦岭, 巨永锋, 杜永兴, 等.智能交通中新型可见光通信系统性能研究[J].公路交通科技, 2016, 33(7): 114-118. doi: 10.3969/j.issn.1002-0268.2016.07.018

    Qin L, Ju Y F, Du Y X, et al. Study on performance of new visible light communication system in intelligent transport[J]. Journal of Highway and Transportation Research and Development, 2016, 33(7): 114-118. doi: 10.3969/j.issn.1002-0268.2016.07.018

    [9]

    Kumar N, Alves L N, Aguiar R L. Design and analysis of the basic parameters for traffic information transmission using VLC[C]//Proceedings of the 2009 1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology, 2009: 798-802.

    [10]

    曹岩, 雷涛.基于交通灯的高精度车辆定位技术[J].计算机工程与应用, 2015, 51(3): 212-215, 264. doi: 10.3778/j.issn.1002-8331.1406-0472

    Cao Y, Lei T. High precision vehicle positioning method based on traffic light[J]. Computer Engineering and Applications, 2015, 51(3): 212-215, 264. doi: 10.3778/j.issn.1002-8331.1406-0472

    [11]

    Chen Q R, Zheng W B, Zhang T, et al. A power analysis model for outdoor long-distance visible light communication[C]//Proceedings of the 2017 Ninth International Conference on Ubiquitous and Future Networks, 2017: 131-136.

    [12]

    Kim Y H, Cahyadi W A, Chung Y H. Experimental demonstration of VLC-based vehicle-to-vehicle communications under fog conditions[J]. IEEE Photonics Journal, 2015, 7(6): 7905309.

    [13]

    Akanegawa M, Tanaka Y, Nakagawa M. Basic study on traffic information system using LED traffic lights[J]. IEEE Transactions on Intelligent Transportation Systems, 2001, 2(4): 197-203. doi: 10.1109/6979.969365

  • 加载中

(6)

(2)

计量
  • 文章访问数:  4950
  • PDF下载数:  1703
  • 施引文献:  0
出版历程
收稿日期:  2019-11-02
修回日期:  2020-02-14
刊出日期:  2020-04-01

目录

/

返回文章
返回