Maragkakis G M, Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A et al. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron Adv 2, 190026 (2019). doi: 10.29026/oea.2019.190026
Citation: Maragkakis G M, Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A et al. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron Adv 2, 190026 (2019). doi: 10.29026/oea.2019.190026

Original Article Open Access

Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation

More Information
  • We use laser-scanning nonlinear imaging microscopy in atomically thin transition metal dichalcogenides (TMDs) to reveal information on the crystalline orientation distribution, within the 2D lattice. In particular, we perform polarization-resolved second-harmonic generation (PSHG) imaging in a stationary, raster-scanned chemical vapor deposition (CVD)-grown WS2 flake, in order to obtain with high precision a spatially resolved map of the orientation of its main crystallographic axis (armchair orientation). By fitting the experimental PSHG images of sub-micron resolution into a generalized nonlinear model, we are able to determine the armchair orientation for every pixel of the image of the 2D material, with further improved resolution. This pixel-wise mapping of the armchair orientation of 2D WS2 allows us to distinguish between different domains, reveal fine structure, and estimate the crystal orientation variability, which can be used as a unique crystal quality marker over large areas. The necessity and superiority of a polarization-resolved analysis over intensity-only measurements is experimentally demonstrated, while the advantages of PSHG over other techniques are analysed and discussed.
  • 加载中
  • [1] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V et al. Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102, 10451-10453 (2005). doi: 10.1073/pnas.0502848102

    CrossRef Google Scholar

    [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [3] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [4] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 10, 1271-1275 (2010). doi: 10.1021/nl903868w

    CrossRef Google Scholar

    [5] Xiao D, Liu G B, Feng W X, Xu X D, Yao W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett 108, 196802 (2012). doi: 10.1103/PhysRevLett.108.196802

    CrossRef Google Scholar

    [6] Mak K F, He K L, Shan J, Heinz T F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol 7, 494-498 (2012). doi: 10.1038/nnano.2012.96

    CrossRef Google Scholar

    [7] Zeng H L, Dai J F, Yao W, Xiao D, Cui X D. Valley polarization in MoS2 monolayers by optical pumping. Nat Nanotechnol 7, 490-493 (2012). doi: 10.1038/nnano.2012.95

    CrossRef Google Scholar

    [8] Kioseoglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D et al. Valley polarization and intervalley scattering in monolayer MoS2. Appl Phys Lett 101, 221907 (2012). doi: 10.1063/1.4768299

    CrossRef Google Scholar

    [9] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol 6, 147-150 (2011). doi: 10.1038/nnano.2010.279

    CrossRef Google Scholar

    [10] Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev Mod Phys 90, 021001 (2018). doi: 10.1103/RevModPhys.90.021001

    CrossRef Google Scholar

    [11] Paradisanos I, Germanis S, Pelekanos N T, Fotakis C, Kymakis E et al. Room temperature observation of biexcitons in exfoliated WS2 monolayers. Appl Phys Lett 110, 193102 (2017). doi: 10.1063/1.4983285

    CrossRef Google Scholar

    [12] Ferrari A C, Bonaccorso F, Fal'ko V, Novoselov K S, Roche S et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598-4810 (2015). doi: 10.1039/C4NR01600A

    CrossRef Google Scholar

    [13] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7, 699-712 (2012). doi: 10.1038/nnano.2012.193

    CrossRef Google Scholar

    [14] Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216-226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [15] Bonaccorso F, Colombo L, Yu G H, Stoller M, Tozzini V et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, 1246501 (2015). doi: 10.1126/science.1246501

    CrossRef Google Scholar

    [16] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S et al. Valleytronics in 2D materials. Nat Rev Mater 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55

    CrossRef Google Scholar

    [17] Kalantar-zadeh K, Ou J Z, Daeneke T, Strano M S, Pumera M et al. Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater 25, 5086-5099 (2015). doi: 10.1002/adfm.201500891

    CrossRef Google Scholar

    [18] Li X, Shan J Y, Zhang W Z, Su S, Yuwen L H et al. Recent advances in synthesis and biomedical applications of two-dimensional transition metal dichalcogenide nanosheets. Small 13, 1602660 (2017). doi: 10.1002/smll.201602660

    CrossRef Google Scholar

    [19] Najmaei S, Yuan J T, Zhang J, Ajayan P, Lou J. Synthesis and defect investigation of two-dimensional molybdenum disulfide atomic layers. Acc Chem Res 48, 31-40 (2015). doi: 10.1021/ar500291j

    CrossRef Google Scholar

    [20] Zou X L, Yakobson B I. An open canvas-2D materials with defects, disorder, and functionality. Acc Chem Res 48, 73-80 (2015). doi: 10.1021/ar500302q

    CrossRef Google Scholar

    [21] Paradisanos I, Pliatsikas N, Patsalas P, Fotakis C, Kymakis E et al. Spatial non-uniformity in exfoliated WS2 single layers. Nanoscale 8, 16197-16203 (2016). doi: 10.1039/C6NR03597C

    CrossRef Google Scholar

    [22] van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater 12, 554-561 (2013). doi: 10.1038/nmat3633

    CrossRef Google Scholar

    [23] Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A, Kioseoglou G et al. Ultrahigh-resolution nonlinear optical imaging of the armchair orientation in 2D transition metal dichalcogenides. Light Sci Appl 7, 18005 (2018). doi: 10.1038/lsa.2018.5

    CrossRef Google Scholar

    [24] Kumar N, Najmaei S, Cui Q N, Ceballos F, Ajayan P M et al. Second harmonic microscopy of monolayer MoS2. Phys Rev B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403

    CrossRef Google Scholar

    [25] Malard L M, Alencar T V, Barboza A P M, Mak K F, de Paula A M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401

    CrossRef Google Scholar

    [26] Li Y L, Rao Y, Mak K F, You Y M, Wang S Y et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett 13, 3329-3333 (2013). doi: 10.1021/nl401561r

    CrossRef Google Scholar

    [27] Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science 344, 488-490 (2014). doi: 10.1126/science.1250564

    CrossRef Google Scholar

    [28] Clark D J, Senthilkumar V, Le C T, Weerawarne D L, Shim B et al. Strong optical nonlinearity of CVD-grown MoS2 monolayer as probed by wavelength-dependent second-harmonic generation. Phys Rev B 90, 121409 (2014). doi: 10.1103/PhysRevB.90.121409

    CrossRef Google Scholar

    [29] Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951-2958 (2014). doi: 10.1021/nn500228r

    CrossRef Google Scholar

    [30] Wang Y, Xiao J, Yang S, Wang Y, Zhang X. Second harmonic generation spectroscopy on two-dimensional materials[Invited]. Opt Mater Express 9, 1136-1149 (2019). doi: 10.1364/OME.9.001136

    CrossRef Google Scholar

    [31] Zhao M, Ye Z L, Suzuki R, Ye Y, Zhu H Y et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci Appl 5, e16131 (2016). doi: 10.1038/lsa.2016.131

    CrossRef Google Scholar

    [32] Boyd R W. Nonlinear Optics 3rd ed (Academic Press, San Diego, 2008).

    Google Scholar

  • Supplementary information for Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation
    oea-2019-0026 PSHG modulation.avi
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(10910) PDF downloads(2965) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint