激光诱导等离子体声波信号实时采集分析软件系统

刘学军, 吴嘉俊, 乔红超, 等. 激光诱导等离子体声波信号实时采集分析软件系统[J]. 光电工程, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534
引用本文: 刘学军, 吴嘉俊, 乔红超, 等. 激光诱导等离子体声波信号实时采集分析软件系统[J]. 光电工程, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534
Liu Xuejun, Wu Jiajun, Qiao Hongchao, et al. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534
Citation: Liu Xuejun, Wu Jiajun, Qiao Hongchao, et al. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal[J]. Opto-Electronic Engineering, 2019, 46(8): 180534. doi: 10.12086/oee.2019.180534

激光诱导等离子体声波信号实时采集分析软件系统

  • 基金项目:
    国家基金委-辽宁省联合基金资助项目(U1608259);国家自然科学基金资助项目(51501219);国家重点研发计划(2016YFB1102704);国家科技支撑计划(2015BAF08B01-01)
详细信息
    作者简介:
    通讯作者: 乔红超(1982-),男,硕士,副研究员,主要从事表面工程的研究。E-mail:hcqiao@sia.cn
  • 中图分类号: O439; TP311.5

The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal

  • Fund Project: Supported by NSFC-Liaoning Province United Foundation (U1608259), National Natural Science Foundation of China (51501219), National Key Development Program (2016YFB1192704), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2015BAF08B01-01)
More Information
  • 为实现激光冲击强化在线检测,针对激光诱导等离子体声波现象,采用SIA-AEDAC-01型声发射数据采集卡采集声波信号,研究并设计了一种激光诱导等离子体声波信号实时采集分析软件系统。设计了该系统的可行性和准确性测试实验,首先用激光冲击强化在线检测系统采集传播在空气中的激光诱导等离子体声波信号,并从中提取等离子体声波信号能量;利用X射线应力分析仪测量试件强化后的残余应力以验证激光冲击强化实验的可靠性。实验结果表明,本文设计开发的软件系统能实时采集分析激光冲击强化过程中的等离子体声波信号,并能准确提取每一次冲击强化产生的声波信号能量;且随着激光冲击能量的增加,等离子体声波信号能量和试件表面残余压应力都增大,且二者曲线线型一致,说明该软件系统准确可靠,满足激光冲击强化在线检测的需求。

  • Overview:Laser shock processing (LSP) is an innovative surface treatment technique. It involves irradiation of the thin opaque coating layer with high-energy short-width laser pulses causing instantaneous vaporization of the surface layer into high-temperature high-pressure laser-induced plasma. The expansion of the laser-induced plasma generates high speed compressive shock waves that propagate into the components. Then the metal material is plastically deformed and generates compressive residual stress in the surface. The surface residual compressive stress is generally used to evaluate the effect of the process of LSP. The main methods of measuring surface residual compressive stress are off-line and low efficiency. It is necessary to develop the non-destructive online detection technology of LSP. The correlation analysis showed the laser-induced plasma acoustic waves can comprehensively reflect the parameter characteristics in the process of LSP. The analysis and extraction of the characteristics of acoustic wave can be used for real-time online detection of the LSP. The real-time acquisition and analysis software system for laser-induced plasma acoustic wave signal based on SIA-AEDAC-01 acoustic emission acquisition card is developed in this work to realize the online detection of LSP. Firstly, the laser-induced plasma acoustic wave signal propagating in air is collected and its energy is obtain by the software system. The residual stress of the test pieces after the treatment of LSP was measured by an X-ray stress analyzer to verify the reliability. The experimental results show that the laser-induced plasma acoustic wave signal can be collected and analyzed in real-time by the software system which can accurately get the acoustic signal energy. At the same time, both the acoustic wave signal energy and the surface residual stress of the test pieces are increased with the laser energy, and their change curve is consistent. In conclusion, the software system can satisfy the requirements of online detection of LSP with accurate and reliable performance.

  • 加载中
  • 图 1  SIA-AEDAC-01型声发射数据采集卡的硬件结构

    Figure 1.  The hardware structure of SIA-AEDAC-01 acoustic emission data acquisition card

    图 2  软件基本架构

    Figure 2.  The basic framework of software

    图 3  软件功能模块设计

    Figure 3.  The design of software function module

    图 4  软件线程设计

    Figure 4.  The design of software thread

    图 5  程序体系结构

    Figure 5.  The architecture of program

    图 6  实验装置示意图

    Figure 6.  The diagram of experimental device

    图 7  等离子体声波信号波形图

    Figure 7.  The diagram of plasma acoustic waveform

    图 8  激光能量对试件表面残余压应力的影响

    Figure 8.  Effect of laser energy on surface residual com-pressive stress of samples

    图 9  激光能量对等离子体声波信号能量的影响

    Figure 9.  Effect of laser energy on plasma acoustic wave signal energy

    表 1  SIA-AEDAC-01型声发射数据采集卡的主要技术参数

    Table 1.  The main technical parameters of SIA-AEDAC-01 acoustic emission data acquisition card

    Technical parameter Value
    Data interface PCI-Express 100 Mb/s
    Sampling precision 24 bit
    Sampling rate Maximum 5 MS/s
    Bandwidth of signal frequency 1 Hz~400 kHz
    Filters Simulation/Digital
    Channel Double
    下载: 导出CSV

    表 2  激光器技术参数

    Table 2.  The technical parameters of laser

    Parameters Value
    Operation material Nd:YAG
    Wavelength/nm 1064
    Pulse energy/J 0~7
    Working frequency/Hz Singal, 0.25, 0.5, 1, 2
    Pulse width/ns 10~30
    Energy distribution Gaussian distribution
    Spot shape Circle
    Spot diameter/mm 2~4
    下载: 导出CSV

    表 3  不同激光能量下对应的激光功率密度

    Table 3.  Laser power intensity of each associated laser energy

    Laser energy/J Laser power intensity/(GW/cm2)
    5 5.80
    5.5 6.38
    6 6.96
    6.5 7.54
    7 8.12
    下载: 导出CSV
  • [1]

    吴嘉俊, 赵吉宾, 乔红超, 等.激光冲击强化技术的应用现状与发展[J].光电工程, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    Wu J J, Zhao J B, Qiao H C, et al. The application status and development of laser shock processing[J]. Opto-Electronic Engineering, 2018, 45(2): 170690. doi: 10.12086/oee.2018.170690

    [2]

    Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-roduced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784. doi: 10.1063/1.346783

    [3]

    李松夏, 乔红超, 赵吉宾, 等.激光冲击强化技术原理及研究发展[J].光电工程, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    Li S X, Qiao H C, Zhao J B, et al. Research and development of laser shock processing technology[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    [4]

    张恭轩, 吴嘉俊, 高宇, 等. TC17钛合金激光冲击强化实验研究[J].表面技术, 2018, 47(3): 96-100. http://d.old.wanfangdata.com.cn/Periodical/bmjs201803016

    Zhang G X, Wu J J, Gao Y, et al. Experimental study on laser shock peening of TC17 titanium alloy[J]. Surface Technology, 2018, 47(3): 96-100. http://d.old.wanfangdata.com.cn/Periodical/bmjs201803016

    [5]

    李应红.激光冲击强化理论与技术[M].北京:科学出版社, 2013.

    Li Y H. Theory and Technology of Laser Shock Processing[M]. Beijing: Science Press of China, 2013.

    [6]

    张永康.激光冲击强化产业化关键问题及应用前景[J].激光与光电子学进展, 2007, 44(3): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703012

    Zhang Y K. The key issue and application prospect of laser shock processing industrialization[J]. Laser & Optoelectronics Progress, 2007, 44(3): 74-77. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200703012

    [7]

    Wu J J, Zhao J B, Qiao H C, et al. Acoustic wave detection of laser shock peening[J]. Opto-Electronic Advances, 2018, 1(9): 180016. doi: 10.29026/oea.2018.180016

    [8]

    马泽祥, 郭兴旺.航空发动机叶片激光冲击强化质量的评估方法[J].无损检测, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019

    Ma Z X, Guo X W. Methods of monitoring laser shock peening for aviation engine blade[J]. Nondestructive Testing, 2015, 37(10): 81-86. doi: 10.11973/wsjc201510019

    [9]

    Takata T, Enoki M, Chivavibul P, et al. Acoustic emission monitoring of laser shock peening by detection of underwater acoustic wave[J]. Materials Transactions, 2016, 57(5): 674-680. doi: 10.2320/matertrans.M2015401

    [10]

    李未龙, 余立, 汪选国.小孔法测量残余应力[J].武钢技术, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017

    Li W L, Yu L, Wang X G. Test of residual stress by hole drilling strain method[J]. Wisco Technology, 2013, 51(6): 55-59. doi: 10.3969/j.issn.1008-4371.2013.06.017

    [11]

    陈怀宁, 唐延东.小孔法测量残余应力的应力—应变有限元分析[J].机械强度, 1993, 15(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200503037

    Chen H N, Tang Y D. Fem analysis of stress-strain for measuring residual stresses with blind-hole method[J]. Journal of Mechanical Strength, 1993, 15(3): 21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb200503037

    [12]

    张定铨. X射线应力测定基本知识第一讲残余应力的基本概念[J].理化检验-物理分册, 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016

    Zhang D Q. Basic knowledge of stress determination by x-ray—lecture No.1 basic concept of residual stress[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(4): 211-213. doi: 10.3969/j.issn.1001-4012.2007.04.016

    [13]

    张定铨.残余应力测定的基本知识第二讲X射线应力测定的基本原理[J].理化检验-物理分册, 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014

    Zhang D Q. Basic knowledge of residual stress determination-lecture No. 2 basic concept of stress determination by X-ray[J]. Physical Testing and Chemical Analysis (Part: A Physical Testing), 2007, 43(5): 263-265. doi: 10.3969/j.issn.1001-4012.2007.05.014

    [14]

    杨建风, 周建忠, 冯爱新.激光冲击强化效果的无损检测[J].机床与液压, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057

    Yang J F, Zhou J Z, Feng A X. Non-destructive detection of the effect of laser shock processing[J]. Machine Tool & Hydraulics, 2007, 35(5): 160-162. doi: 10.3969/j.issn.1001-3881.2007.05.057

    [15]

    邹世坤, 曹子文, 杨贺来.激光冲击处理发动机叶片的固有频率测试[J].中国机械工程, 2010, 21(6): 648-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201006005

    Zou S K, Cao Z W, Yang H L. Natural frequency test of turbine blades in laser shock processing[J]. China Mechanical Engineering, 2010, 21(6): 648-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjxgc201006005

    [16]

    Zhao R, Xu R Q, Shen Z H, et al. Dynamics of laser-induced shock wave by optical probe in air[J]. Optik, 2006, 117(7): 299-302. doi: 10.1016/j.ijleo.2005.09.005

    [17]

    Aguilera J A, Aragón C. Characterization of laser-induced plasma during its expansion in air by optical emission spectroscopy: observation of strong explosion self-similar behavior[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 86-93. doi: 10.1016/j.sab.2014.04.013

    [18]

    卞保民, 陈建平, 杨玲, 等.空气中激光等离子体冲击波的传输特性研究[J].物理学报, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012

    Bian B M, Chen J P, Yang L, et al. The transmission characteristic of airborne laser plasma shock Wave[J]. Acta Physica Sinica, 2000, 49(3): 445-448. doi: 10.3321/j.issn:1000-3290.2000.03.012

    [19]

    卞保民, 杨玲, 陈笑, 等.激光等离子体及点爆炸空气冲击波波前运动方程的研究[J].物理学报, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    Bian B M, Yang L, Chen X, et al. Study of the laser-induced plasmas and the kinematics of shock waves in air by a way intense explosion[J]. Acta Physica Sinica, 2002, 51(4): 809-813. doi: 10.3321/j.issn:1000-3290.2002.04.019

    [20]

    Michael D B, David M R, Won S U, et al. Real time laser shock peening quality assurance by natural frequency analysis: 6914215[P]. 2005-07-05.

    [21]

    梁建民, 杨贺来, 邹世坤.叶片激光冲击强化处理的过程监测[J].新技术新工艺, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030

    Liang J M, Yang H L, Zou S K. The processing monitor for aero-engine blades' laser shock processing[J]. New Technology & New Process, 2008(2): 82-84. doi: 10.3969/j.issn.1003-5311.2008.02.030

    [22]

    杨贺来, 梁建民.叶片激光冲击强化处理质量检测技术研究[J].天津城市建设学院学报, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010

    Yang H L, Liang J M. Research on the quality inspection for blades' laser shock processing[J]. Journal of Tianjin Institute of Urban Construction, 2010, 16(1): 37-40. doi: 10.3969/j.issn.1006-6853.2010.01.010

    [23]

    吴边, 王声波, 郭大浩, 等.强激光冲击铝合金改性处理研究[J].光学学报, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012

    Wu B, Wang S B, Guo D H, et al. Research of material modification induced by laser shock processing on aluminum alloy[J]. Acta Optica Sinica, 2005, 25(10): 1352-1356. doi: 10.3321/j.issn:0253-2239.2005.10.012

    [24]

    王飞.基于空气中冲击波辐值和飞行时间的激光冲击强化在线检测试验研究[D].镇江: 江苏大学, 2010.

    Wang F. Experimental studies on quality assurance of laser shock processing by the amplitude and time-of-flight of the shock wave in air[D]. Zhenjiang: Jiangsu University, 2010.

    [25]

    邱辰霖, 程礼, 何卫锋.一种基于数据间相关性的激光喷丸声学监测技术[J]. 振动与冲击, 2017, 36(4): 139-143. http://d.old.wanfangdata.com.cn/Periodical/zdycj201704022

    Qiu C L, Cheng L, He W F. A condition monitoring method for laser peening based on the correlation between the adjacent aata[J]. Journal of Vibration and Shock, 2017, 36(4): 139-143. http://d.old.wanfangdata.com.cn/Periodical/zdycj201704022

    [26]

    乔红超, 赵吉宾.激光冲击强化在线检测系统设计及应用[J].激光与光电子学进展, 2013, 50(7): 071401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201307008

    Qiao H C, Zhao J B. Design and implementation of online laser peening detection system[J]. Laser & Optoelectronics Progress, 2013, 50(7): 071401. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201307008

    [27]

    沈功田, 耿荣生, 刘时风.声发射信号的参数分析方法[J].无损检测, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008

    Shen G T, Geng R S, Liu S F. Parameter analysis of acoustic emission signals[J]. Nondestructive Testing, 2002, 24(2): 72-77. doi: 10.3969/j.issn.1000-6656.2002.02.008

    [28]

    Bacon D F, Konuru R, Murthy C, et al. Thin locks: featherweight synchronization for Java[J]. ACM SIGPLAN Notices, 2004, 39(4): 583-595. doi: 10.1145/989393.989452

  • 加载中

(9)

(3)

计量
  • 文章访问数:  7234
  • PDF下载数:  2374
  • 施引文献:  0
出版历程
收稿日期:  2018-10-18
修回日期:  2019-01-18
刊出日期:  2019-08-01

目录

/

返回文章
返回