Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070
Citation: Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070

Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm

    Fund Project: Supported by National Natural Science Foundation of China (61790584)
More Information
  • Mid-infrared Er:ZBLAN fiber laser emitting at the wavelength of 3 μm is widely used in industry, medicine, military and other fields due to its advantages such as good beam quality, small size, coiling-ability and easy realization. In this paper, the development status of Er:ZBLAN fiber laser is introduced. The technical difficulties encountered in the development of Er:ZBLAN fiber laser are discussed. Moreover, their future development directions are also summarized and prospected. According to the current research situation, it is proposed that multi-stage amplification will be a method to further improve the single laser power of 3 μm Er:ZBLAN fiber laser. In order to breakthrough the power limit of single laser, the integration of single laser and fiber beam combination technology will become a research direction in the future.
  • 加载中
  • [1] 潘其坤.中红外固体激光器研究进展[J].中国光学, 2015, 8(4): 557-566. doi: 10.3788/CO.20150804.0557

    CrossRef Google Scholar

    Pan Q K. Progress of mid-infrared solid-state laser[J]. Chinese Journal of Optics, 2015, 8(4): 557-566. doi: 10.3788/CO.20150804.0557

    CrossRef Google Scholar

    [2] 孙骁, 韩隆, 王克强.直接抽运中红外固体激光器研究进展[J].激光与光电子学进展, 2015, 54(5): 050007.

    Google Scholar

    Sun X, Han L, Wang K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 54(5): 050007.

    Google Scholar

    [3] 汪中贤, 樊祥.红外制导导弹的发展及其关键技术[J].飞航导弹, 2009(10): 14-19.

    Google Scholar

    Wang Z X, Fan X. The development of infrared guided missiles and its key technologies[J]. Winged Missiles Journal, 2009(10): 14-19.

    Google Scholar

    [4] 王瑞凤, 张彦朴, 许志艳.激光技术军事应用的现状及发展趋势[J].红外与激光工程, 2007, 36(S1): 576-579. doi: 10.3969/j.issn.1007-2276.2007.z1.163

    CrossRef Google Scholar

    Wang R F, Zhang Y P, Xu Z Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S1): 576-579. doi: 10.3969/j.issn.1007-2276.2007.z1.163

    CrossRef Google Scholar

    [5] 钟鸣, 任钢. 3~5μm中红外激光对抗武器系统[J].四川兵工学报, 2007, 28(1): 3-6. doi: 10.3969/j.issn.1006-0707.2007.01.002

    CrossRef Google Scholar

    Zhong M, Ren G. 3~5μm medium infrared laser countermeasure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3-6. doi: 10.3969/j.issn.1006-0707.2007.01.002

    CrossRef Google Scholar

    [6] 韩玺, 蒋洞微, 王国伟, 等.锑化物纳米结构的中红外激光器与探测器的新进展[J].中国基础科学, 2017, 19(6): 41-46. doi: 10.3969/j.issn.1009-2412.2017.06.008

    CrossRef Google Scholar

    Han X, Jiang D W, Wang G W, et al. New Recent advances of mid-infrared lasers and detec-tors in antimonide-based nanostructures[J]. China Basic Science, 2017, 19(6): 41-46. doi: 10.3969/j.issn.1009-2412.2017.06.008

    CrossRef Google Scholar

    [7] Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3μm[Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A15-A28. doi: 10.1364/JOSAB.34.000A15

    CrossRef Google Scholar

    [8] 谭改娟, 谢冀江, 张来明, 等.中波红外激光技术最新进展[J].中国光学, 2013, 6(4): 501-512. doi: 10.3788/CO.20130604.0501

    CrossRef Google Scholar

    Tan G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Journal of Optics, 2013, 6(4): 501-512. doi: 10.3788/CO.20130604.0501

    CrossRef Google Scholar

    [9] Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3[J]. Applied Physics Letters, 1967, 10(5): 167-170. doi: 10.1063/1.1754895

    CrossRef Google Scholar

    [10] Wang L, Huang H T, Shen D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22(16): 19495-19503. doi: 10.1364/OE.22.019495

    CrossRef Google Scholar

    [11] Zhu X S, Jain R. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Applied Optics, 2006, 45(27): 7118-7125. doi: 10.1364/AO.45.007118

    CrossRef Google Scholar

    [12] Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser[J]. Nature, 2002, 415(6874): 883-887. doi: 10.1038/415883a

    CrossRef Google Scholar

    [13] Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408

    CrossRef Google Scholar

    [14] Brida D, Marangoni M, Manzoni C, et al. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Optics Letters, 2008, 33(24): 2901-2903. doi: 10.1364/OL.33.002901

    CrossRef Google Scholar

    [15] Chalus O, Bates P K, Smolarski M, et al. Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz[J]. Optics Express, 2009, 17(5): 3587-3594. doi: 10.1364/OE.17.003587

    CrossRef Google Scholar

    [16] 陈育斌, 王红岩, 陆启生, 等.光抽运中红外气体激光器[J].激光与光电子学进展, 2015, 52(1): 010005.

    Google Scholar

    Chen Y B, Wang H Y, Lu Q S, et al. Optically pumped mid-infrared gas lasers[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010005.

    Google Scholar

    [17] Sorokina I T, Vodopyanov K L. Solid-State Mid-Infrared Laser Sources[M]. New York: Springer, 2003: 220-245.

    Google Scholar

    [18] 沈德元, 范滇元.中红外激光器[M].北京:国防工业出版社, 2015: 152-163.

    Google Scholar

    Shen D Y, Fan D Y. Mid-infrared Lasers[M]. Beijing: National Defense Industry Press, 2015: 152-163.

    Google Scholar

    [19] Kim J S, Park R H. Feature-based block matching algorithm using integral projections[J]. Electronics Letters, 1989, 25(1): 29-30. doi: 10.1049/el:19890021

    CrossRef Google Scholar

    [20] Zhu X S, Jain R. Compact 2W wavelength-tunable Er:ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. doi: 10.1364/OL.32.002381

    CrossRef Google Scholar

    [21] Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 2007, 32(1): 26-28.

    Google Scholar

    [22] 黄园芳, 彭跃峰, 魏星斌, 等.瓦级连续波2.8μm中红外Er:ZBLAN光纤激光器[J].中国激光, 2012, 39(5): 0502007. doi: 10.3788/CJL201239.0502007b

    CrossRef Google Scholar

    Huang Y F, Peng Y F, Wei X B, et al. Watt-level mid-infrared 2.8μm mid-infared Er:ZBLAN fiber laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502007. doi: 10.3788/CJL201239.0502007b

    CrossRef Google Scholar

    [23] 沈炎龙, 黄珂, 周青松, 等. 10W级高效率单模中红外2.8μm光纤激光器[J].中国激光, 2015, 42(5): 0502008.

    Google Scholar

    Shen Y L, Huang K, Zhou S Q, et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502008.

    Google Scholar

    [24] Yang Q L, Miao L L, Jiang G B, et al. Modeling the broadband mid-infrared dispersion compensator based on ZBLAN microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(7): 728-731. doi: 10.1109/LPT.2015.2506646

    CrossRef Google Scholar

    [25] Tokita M, Murakami S, Shimizu M, et al. Liquid-cooled 24W mid-infrared Er:ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062-3064. doi: 10.1364/OL.34.003062

    CrossRef Google Scholar

    [26] Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800nm[J]. Optics Letters, 2007, 32(5): 454-456. doi: 10.1364/OL.32.000454

    CrossRef Google Scholar

    [27] Bernier M, Faucher D, Caron N, et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941-16946. doi: 10.1364/OE.17.016941

    CrossRef Google Scholar

    [28] Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885. doi: 10.1364/OL.40.002882

    CrossRef Google Scholar

    [29] Aydin Y O, Faucher V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542

    CrossRef Google Scholar

    [30] 马万卓, 王天枢, 王富任, 等. 2μm可调谐高重复频率主动锁模光纤激光器[J].光电工程, 2018, 45(10): 170662. doi: 10.12086/oee.2018.170662

    CrossRef Google Scholar

    Ma W Z, Wang T S, Wang F R, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662. doi: 10.12086/oee.2018.170662

    CrossRef Google Scholar

    [31] 李维炜, 黄义忠, 罗正钱.复合二维材料GO-MoS2锁模掺铒光纤激光器[J].光电工程, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653

    CrossRef Google Scholar

    Li W W, Huang Y Z, Luo Z Q. Composite two-dimensional material GO-MoS2-based Passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653

    CrossRef Google Scholar

    [32] 胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J].光电工程, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741

    CrossRef Google Scholar

    Hu X L, Yan Z J, Huang Q Q, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741

    CrossRef Google Scholar

    [33] Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706-707. doi: 10.1049/el:19940502

    CrossRef Google Scholar

    [34] Tokita S, Murakami M, Shimiz S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812-2814. doi: 10.1364/OL.36.002812

    CrossRef Google Scholar

    [35] Shen Y L, Wang Y S, Luan K P, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 2017, 123(4): 105. doi: 10.1007/s00340-017-6684-0

    CrossRef Google Scholar

    [36] Shen Y L, Wang Y S, Luan K P, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659. doi: 10.1038/srep26659

    CrossRef Google Scholar

    [37] Zhang T, Feng F Y, Zhang H, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film[J]. Laser Physics Letters, 2016, 13(7): 075102. doi: 10.1088/1612-2011/13/7/075102

    CrossRef Google Scholar

    [38] Tang P H, Wu M, Wang Q K, et al. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576. doi: 10.1109/LPT.2016.2555989

    CrossRef Google Scholar

    [39] Wei C, Wang X S, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233

    CrossRef Google Scholar

    [40] Tokita S, Murakami M, Shimizu S, et al. Graphene Q-switching of a 3 μm Er: ZBLAN fiber laser[C]//Proceedings of Advanced Solid-State Lasers Congress, 2013.

    Google Scholar

    [41] Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718. doi: 10.1364/OE.23.024713

    CrossRef Google Scholar

    [42] Ning S G, Feng G Y, Dai S Y, et al. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8(2): 025121. doi: 10.1063/1.5012847

    CrossRef Google Scholar

    [43] Yang L L, Kang Z, Huang B, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 2018, 43(21): 5459-5462. doi: 10.1364/OL.43.005459

    CrossRef Google Scholar

    [44] Wang S W, Tang Y L, Yang J L, et al. MoS2 Q-switched 2.8 μm Er:ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101. doi: 10.1088/1555-6611/aaf642

    CrossRef Google Scholar

    [45] 王少奇, 邓颖, 张永亮, 等.掺Er3+氟化物光纤振荡器中红外超短脉冲的产生[J].物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206

    CrossRef Google Scholar

    Wang S Q, Deng Y, Zhang Y L, et al. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser[J]. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206

    CrossRef Google Scholar

    [46] Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626. doi: 10.1364/OPTICA.2.000623

    CrossRef Google Scholar

    [47] Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228. doi: 10.1364/OL.40.004226

    CrossRef Google Scholar

    [48] Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855

    CrossRef Google Scholar

    [49] Qin Z P, Xie G Q, Zhao C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59. doi: 10.1364/OL.41.000056

    CrossRef Google Scholar

    [50] Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10. doi: 10.1109/LPT.2015.2478836

    CrossRef Google Scholar

    [51] Shen Y L, Wang Y S, Chen H W, et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 2017, 7: 14913. doi: 10.1038/s41598-017-13089-6

    CrossRef Google Scholar

    [52] Shu S L, Hou G Y, Feng J, et al. Progress of optically pumped GaSb based semiconductor disk laser[J]. Opto-Electronic Advances, 2018, 1(2): 170003.

    Google Scholar

  • Overview: Laser emitting at the wavelength of 3 μm has great demand for a wide range of scientific and technological applications, including military, medicine and communication. The laser emitting at this special wavelength can be generated by using crystals, glass, semiconductors, and gases as gain media. Compared with these gain media, Er doped ZBLAN (Er:ZBLAN) fiber used as gain media for 3 μm laser has larger surface area and volume ratio, which is conductive to heat dissipation. Its special waveguide structure is also conductive to high beam quality. And it can be pumped by 976 nm diode. Therefore, the 976 nm pumped Er:ZBLAN fiber is a common method to realize laser emitting at 3 μm. In this paper, the recently research progress of 3 μm Er:ZBLAN fiber laser is reviewed from both continuous and pulsed directions. For CW 3 μm Er:ZBLAN fiber laser, spatial coupling and all-fiber structure are two main methods for power scaling. Spatial coupling is a common and easy to realize method, but the end face of Er:ZBLAN fiber is easily damaged due to thermal accumulation and deliquescence. However, all-fiber structure does not need to consider the damage of the end face caused by thermal accumulation and the coupling efficiency is higher than that of spatial coupling. It is reported that only the University of Laval has realized the all-fiber structure emitting at 3 μm based on fluoride fiber Bragg grating, and recently the power has been further increased to 41.6 W. The fluoride fiber Bragg grating is the key device for all-fiber structure to achieve this high power. So the research of fluoride fiber device is important for the development of Er:ZBLAN fiber laser. For pulsed 3 μm Er:ZBLAN fiber laser, Q-switched and mode-locked are two main methods to realize Er:ZBLAN fiber laser pulse emmiting. Active and passive Q-switched has been used to the accomplish the Q-switched Er:ZBLAN fiber laser. Compared to the passive Q-switched method, the active Q-switched can get higher peak power. In order to accomplish femtosecond 3 μm Er:ZBLAN fiber laser, the mode-locked method was also used, including nonlinear polarization evolution and saturable absorber.

    At present, the power of both CW and pulsed 3 μm Er:ZBLAN fiber laser still have a large room for improvement. The multi-stage pulse amplification can rise laser energy, especially for femtosecond 3 μm Er:ZBLAN fiber laser. In order to breakthough the power limit of single laser, the fiber combining will be the best choice to improve the power of CW and pulsed 3 μm Er:ZBLAN fiber laser.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(2)

Article Metrics

Article views(11680) PDF downloads(3896) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint