应用于脉冲TOF成像LADAR系统的高性能CMOS全差分放大器设计

蒋衍, 刘汝卿, 朱精果, 等. 应用于脉冲TOF成像LADAR系统的高性能CMOS全差分放大器设计[J]. 光电工程, 2019, 46(7): 190194. doi: 10.12086/oee.2019.190194
引用本文: 蒋衍, 刘汝卿, 朱精果, 等. 应用于脉冲TOF成像LADAR系统的高性能CMOS全差分放大器设计[J]. 光电工程, 2019, 46(7): 190194. doi: 10.12086/oee.2019.190194
Jiang Yan, Liu Ruqing, Zhu Jingguo, et al. A high-performance CMOS FDMA for pulsed TOF imaging LADAR system[J]. Opto-Electronic Engineering, 2019, 46(7): 190194. doi: 10.12086/oee.2019.190194
Citation: Jiang Yan, Liu Ruqing, Zhu Jingguo, et al. A high-performance CMOS FDMA for pulsed TOF imaging LADAR system[J]. Opto-Electronic Engineering, 2019, 46(7): 190194. doi: 10.12086/oee.2019.190194

应用于脉冲TOF成像LADAR系统的高性能CMOS全差分放大器设计

  • 基金项目:
    国家自然科学基金青年基金资助项目(61605216)
详细信息
    作者简介:
    通讯作者: 刘汝卿(1987-),女,硕士,工程师,主要从事激光探测系统电路设计的研究。E-mail:liuruqing@ime.ac.cn
  • 中图分类号: TB872

A high-performance CMOS FDMA for pulsed TOF imaging LADAR system

  • Fund Project: Supported by the National Science Foundation of Youth Fund (61605216)
More Information
  • 本文设计了一种应用于脉冲飞行时间(TOF)成像激光雷达探测系统的高带宽、低噪声全差分放大器(FDMA)。该芯片采用多级级联结构和有源电感技术,增大电路带宽和减少芯片面积,并且通过使用失调隔离技术,增强了各增益级对工艺偏差的鲁棒性。在输出级电路中,为使全差分放大器具有更强的驱动能力,采用了宽带放大器和输出缓冲器级联结构做为输出。同时,为了满足激光雷达系统的实际需求,采用复用失调隔离电路的方式,实现了级间带通滤波来限制放大器的适用带宽。采用CMSC的CMOS工艺进行了FDMA流片。测试结果表明,该芯片具有730.6 MHz的-3 dB带宽,在使用带通滤波器优化后的开环增益为23.5 dB,等效输入噪声密度为2.7 nV/sqrt(Hz),有效地降低了系统噪声。芯片采用3.3 V电源供电,功耗为102.3 mW,整体面积为0.25 mmc×0.25 mm。作为激光雷达全系统集成芯片中的一部分,较好地满足系统指标要求。

  • Overview: As an active optical remote imaging technology, the laser detection and ranging (LADAR) system shows an enormous potential in industrial and civil applications with the rapid development of unmanned aerial vehicle (UAV), and so on. Recently, LADAR are constantly developing towards integration, miniaturization and arraying in order to achieve higher detection and wider range of application. For the whole detection system, the performance height of the receiver circuit can directly determine the application height of the system. The amplifier receiver of the LADAR system which converts the small optical pulse signal into an electrical pulse mainly includes two parts: a photoelectric detector and the analog front-end circuits. Since the transmit power of the pulse laser are limited and considering the safety of human eyes, in active imaging systems the performance of the amplifier receiver becomes a critical issue. Therefore, a high-performance main amplifier is a key component to the LADAR system. This paper presents a high bandwidth and low noise fully differential main amplifier (FDMA) for the pulsed time-of-flight (TOF) imaging laser detection and ranging application, which is used to amplify the small pulse echo signal. To meet the entire system bandwidth requirements, the four levels cascaded architecture and active inductor technology are designed to enlarge the bandwidth of the circuit and reduce the chip area. The cascaded gain stages, which adopted DC offset isolation circuit, are more robust to the alteration of process and temperature compared to the traditional structure. A large bandwidth amplifier (LBA) and an output buffer (OB) structure has been designed to enhance the drive capabilities. Besides, in order to adapt the demand of the LADAR system, the amplifier receiver’s bandwidth has been limited to improve the SNR by use of the inter-stage bandpass filter which reuses the DC offset isolation circuit. For the temperature variation of -40 ℃ to 85 ℃, the simulated results have confirmed the performances of the high bandwidth and low noise fully differential main amplifier. The proposed design was implemented and fabricated in CSMC CMOS technology. The measurement results show that the chip realizes the -3 dB bandwidth of 730.6 MHz, and an open loop gain of 23.5 dB with the bandpass filter worked. The input-referred noise voltage is 2.7 nV/sqrt(Hz), which effectively reduces the system noise. This chip that occupies 0.25 mmc×0.25 mm in area consumes a power dissipation of 102.3 mW from the 3.3 V power supply. As a part of the integrated chip of the laser radar system, it can better meet the requirements of system and it shows good performance.

  • 加载中
  • 图 1  Block diagram of a typical TOF LADAR

    图 2  Block diagram of the proposed amplifier receiver

    图 3  The architecture of fully differential main amplifier

    图 4  The amplifier structure with active inductor technique

    图 5  Small-signal model of an active inductor

    图 6  The inter-stage bandpass filter of the schematic

    图 7  The large bandwidth amplifier (a) and output buffer schematic (b)

    图 8  Photograph of the fully differential main amplifier chip

    图 9  PCB test board

    图 10  Test apparatus and environment

    图 11  Measured S parameters with the inter-stage bandpass filter

    图 12  Measured noise spectrum of the output

    图 13  Measured amplitude response of the FDMA

    图 14  Measured frequency response of the FDMA

  • [1]

    Williams G M. Optimization of eyesafe avalanche photodiode lidar for automobile safety and autonomous navigation systems[J]. Optical Engineering, 2017, 56(3): 031224. doi: 10.1117/1.OE.56.3.031224

    [2]

    Zheng H, Ma R, Zhu Z M. A linear and wide dynamic range transimpedance amplifier with adaptive gain control technique[J]. Analog Integrated Circuits and Signal Processing, 2017, 90(1): 217-226. doi: 10.1007/s10470-016-0867-1

    [3]

    Behroozpour B, Sandborn P A M, Wu M C, et al. Lidar system architectures and circuits[J]. IEEE Communications Magazine, 2017, 55(10): 135-142. doi: 10.1109/MCOM.2017.1700030

    [4]

    Cho H S, Kim C H, Lee S G. A high-sensitivity and low-walk error LADAR receiver for military application[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61(10): 3007-3015. doi: 10.1109/TCSI.2014.2327282

    [5]

    Zheng H, Ma R, Liu M L, et al. High sensitivity and wide dynamic range analog front-end circuits for pulsed TOF 4-D imaging LADAR receiver[J]. IEEE Sensors Journal, 2018, 18(8): 3114-3124. doi: 10.1109/JSEN.2018.2809795

    [6]

    Ngo T H, Kim C H, Kwon Y J, et al. Wideband receiver for a three-dimensional ranging LADAR system[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60(2): 448-456. doi: 10.1109/TCSI.2012.2215800

    [7]

    McDonough R N, Whalen A D. Detection of Signals in Noise[M]. 2nd ed. San Diego, CA, USA: Academic, 1995.

    [8]

    Ruotsalainen T, Palojarvi P, Kostamovaara J. A wide dynamic range receiver channel for a pulsed time-of-flight laser radar[J]. IEEE Journal of Solid-State Circuits, 2001, 36(8): 1228-1238. doi: 10.1109/4.938373

    [9]

    Zheng H, Ma R, Liu M L, et al. A linear dynamic range receiver with timing discrimination for pulsed TOF imaging LADAR application[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(11): 2684-2691. doi: 10.1109/TIM.2018.2826860

    [10]

    Liu J B, Gu M, Chen H D, et al. A CMOS front-end circuit for sonet oc-96 receiver[C]//2006 International Conference on Communications, Circuits and Systems, Guilin, China, 2006, 3: 1961-1965.

    [11]

    Huang H Y, Chien J C, Lu L H. A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback[J]. IEEE Journal of Solid-State Circuits, 2007, 42(5): 1111-1120. doi: 10.1109/JSSC.2007.894819

    [12]

    Hu Y, Wang Z G, Feng J, et al. 5Gb/s 0.25μm CMOS limiting amplifier[J]. Chinese Journal of Semiconductors, 2003, 24(12): 1250-1254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtxb200312004

    [13]

    Xue Z F, Li Z Q, Wang Z G, et al. A low noise, 1.25Gb/s front-end amplifier for optical receivers[J]. Chinese Journal of Semiconductors, 2006, 27(8): 1373-1377. http://cn.bing.com/academic/profile?id=1172e31d30e3102976e9d661e43904b8&encoded=0&v=paper_preview&mkt=zh-cn

    [14]

    Wang Y J, Khan M Z, Raut R. A fully differential CMOS limiting amplifier with active Inductor for optical receiver[C]//Canadian Conference on Electrical and Computer Engineering, Saskatoon, Canada, 2005: 1751-1754.

    [15]

    Zheng R. 15 Gb/s CMOS monolithic parallel front-end amplifier for optical receiver design[D]. Nanjing: Southeast University, 2005.

    [16]

    Liang B L, Kwasniewski T, Wang Z G, et al. A monolithic 10-Gb/s CMOS limiting amplifier for low cost optical communication systems[C]//Proceedings of APCC2008, Tokyo, Japan, 2008.

    [17]

    Kurtti S, Kostamovaara J. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping[J]. IEEE Journal of Solid-State Circuits, 2009, 44(3): 835-847. doi: 10.1109/JSSC.2008.2012364

    [18]

    Ahmed M G, Talegaonkar M, Elkholy A, et al. A 12-Gb/s -16.8-dBm OMA sensitivity 23-mW optical receiver in 65-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 445-457. doi: 10.1109/JSSC.2017.2757008

  • 加载中

(14)

计量
  • 文章访问数:  7879
  • PDF下载数:  2238
  • 施引文献:  0
出版历程
收稿日期:  2019-04-05
修回日期:  2019-05-06
刊出日期:  2019-07-01

目录

/

返回文章
返回