电润湿电子纸的实时动态显示驱动系统实现

钱明勇, 林珊玲, 曾素云, 等. 电润湿电子纸的实时动态显示驱动系统实现[J]. 光电工程, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623
引用本文: 钱明勇, 林珊玲, 曾素云, 等. 电润湿电子纸的实时动态显示驱动系统实现[J]. 光电工程, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623
Qian Mingyong, Lin Shanling, Zeng Suyun, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Opto-Electronic Engineering, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623
Citation: Qian Mingyong, Lin Shanling, Zeng Suyun, et al. Real-time dynamic driving system implementation of electrowetting display[J]. Opto-Electronic Engineering, 2019, 46(6): 180623. doi: 10.12086/oee.2019.180623

电润湿电子纸的实时动态显示驱动系统实现

  • 基金项目:
    国家重点研发计划资助(2016YFB0401503);福建省科技重大专项(2014HZ0003-1);广东省科技重大专项(2016B090906001);广东省光信息材料与技术重点实验室开放基金资助项目(2017B030301007)
详细信息
    作者简介:
    通讯作者: 林志贤(1975-),男,博士,教授,博士生导师,主要从事信息显示技术与平板显示器件驱动方面的研究。E-mail:lzx2005000@163.com
  • 中图分类号: TN27

Real-time dynamic driving system implementation of electrowetting display

  • Fund Project: Supported by the National Key Research and Development Program of China (2016YFB0401503), Science and Technology Major Program of Fujian Province (2014HZ0003-1), Science and Technology Major Program of Guangdong Province (2016B090906001), and the Guangdong Provincial Key Laboratory of Optical Information Materials and Technology (2017B030301007)
More Information
  • 为了实现电润湿电子纸显示器实时播放视频,本文设计了DVI视频图像编解码系统加上FPGA时序控制的显示驱动系统。DVI系统负责获取信号源并进行图像编解码,FPGA负责视频图像数据的缓存处理以及驱动波形的控制。本文提出的多灰度动态对称驱动波形,可改善油墨分裂现象,并且在增加灰度等级的同时抑制电荷捕获现象。实验表明:该系统成功改善了油墨分裂、电荷捕获等问题,成功驱动1024x768分辨率的电润湿显示器跟随PC端进行实时视频播放,视频的帧率达到60帧/秒,像素的最高灰度达到15阶,满足电润湿电子纸动态显示视频的要求。

  • Overview:Electrowetting display is a new type of paper-like display, which has the characteristics of low power consumption, high contrast, no radiation and easy colorization, and is one of the most promising display technologies in the future. In order to play video in real time of electrowetting display, a display driving system which includes a DVI video codec system and FPGA timing control system is designed. The DVI system is responsible for acquiring the signal source, for performing image encoding and decoding, and for obtaining all kinds of various resolution videos. The video source comes from the computer, and is not required to be stored. The operation is simple and convenient. Dual-link DVI system supports to transfer ultra-high resolution video, and the system is suitable for electrowetting display panels with increasing resolution at later stages. FPGA is responsible for buffering and processing of video data and for controlling electrowetting driving waveforms. FPGA can easily process video image data of various resolutions due to its powerful and high-speed data parallel processing capability. The driving waveform for electrowetting is also controlled by FPGA without other waveform generator devices, which is more conducive to the development of the driving system into a portable device. In terms of driving waveform, the ordinary multi-gray electrowetting driving waveform can display the image of 9th gray scale, but the ink is prone to splitting under the driving voltage. The charge trapping phenomenon is serious. The ink-splitting phenomenon can decrease the aperture ratio and brightness of electrowetting display panels, and the charge-trapping phenomenon would increase the close response time of the ink and reduce the frame rate, which is not conductive to play video. This paper also proposes an improved multi-grayscales dynamic symmetrical driving waveform, which improves the ink-splitting phenomenon and suppresses the charge-trapping phenomenon while increasing the gray level. The results show that the driving system successfully improves the problems of oil-splitting and charge-trapping, and drives the 1024x768 resolution electrowetting display to play video in real time following the computer. The frame rate of the video reaches 60 frames/second, and the highest gray level of the pixel reaches 15. The video image has clear details, and the system transmission is stable. These properties meet the requirements for dynamic display of the electrowetting paper.

  • 加载中
  • 图 1  电润湿电子纸的像素单元结构图。(a)无电压;(b)施加电压;(c)无电压俯视图;(d)施加电压俯视图

    Figure 1.  Pixel structure of EWD.(a) No voltage; (b) Appling voltage; (c) Overlook view of no voltage; (d) Overlook view of appling voltage

    图 2  驱动系统工作框图

    Figure 2.  Working diagram of driving system

    图 3  驱动系统实物图

    Figure 3.  Practicality picture of driving system

    图 4  DVI视频图像编解码系统工作流程图

    Figure 4.  Working flow chart of DVI video image codec system

    图 5  数据接收模块算法流程图

    Figure 5.  Data receiving module algorithm flow chart

    图 6  双线性插值算法窗口

    Figure 6.  Bilinear interpolation algorithm window

    图 7  数据处理模块算法流程图

    Figure 7.  Data processing module algorithm flow chart

    图 8  TCON模块工作流程图

    Figure 8.  Working flow chart of TCON module

    图 9  电润湿显示器电荷捕获现象图

    Figure 9.  Charge-trapping phenomenon of the EWD

    图 10  9阶灰度动态非对称驱动波形图

    Figure 10.  Dynamic asymmetrical driving waveform for gray level 9

    图 11  动态非对称不等子帧驱动波形图

    Figure 11.  Dynamic asymmetric unequal sub-frame driving waveform

    图 12  动态对称驱动波形图

    Figure 12.  Dynamic symmetric driving waveform

    图 13  系统同步信号波形图。(a)场同步信号;(b)行同步信号

    Figure 13.  System synchronization signal waveform.(a) Field sync signal; (b) Line sync signal

    图 14  两种驱动波形下的油墨状态图。(a)油墨分裂图;(b)油墨未分裂图

    Figure 14.  Ink state between two kinds of driving waveforms.(a) Oil split diagram; (b) Oil unsplit diagram

    图 15  两种不同驱动波形下的显示对比图。(a) 9阶灰度图;(b) 15阶灰度图

    Figure 15.  Visual contrast between two kinds of driving waveform.(a) 9 grayscales image; (b) 15 grayscales image

    图 16  两种不同驱动波形下的响应曲线图。(a) 9阶灰度驱动波形;(b)多灰度动态对称驱动波形

    Figure 16.  Response time between two kinds of driving waveforms.(a) 9 grayscales driving waveform; (b) Multi-grayscales dynamic

  • [1]

    Hayes R A, Feenstra B J. Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425(6956): 383-385. doi: 10.1038/nature01988

    [2]

    段明正.电润湿电子纸的驱动波形和显示系统设计[D].广州: 华南师范大学, 2015.

    Duan M Z. Driving waveform and display system design of electrowetting display[D]. Guangzhou: South China Normal University, 2015.

    [3]

    Van Dijk R, Feenstra B J, Hayes R A, et al. 68. 3: Gray scales for video applications on electrowetting displays[J]. SID Symposium Digest of Technical Papers, 2006, 37(1): 1926-1929. doi: 10.1889/1.2433427

    [4]

    Jung H Y, Choi U C, Park S H, et al. P-48: Development of driver IC with novel driving method for the electrowetting display[J]. SID Symposium Digest of Technical Papers, 2012, 43(1): 1239-1242. doi: 10.1002/j.2168-0159.2012.tb06022.x

    [5]

    Zhang X M, Bai P F, Hayes R A, et al. Novel driving methods for manipulating oil motion in electrofluidic display pixels[J]. Journal of Display Technology, 2016, 12(2): 200-205. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7cce66d2ef188d3e4d7ea5b51137625

    [6]

    Chen Y C, Chiu Y H, Lee W Y, et al. 56.3: A charge trapping suppression method for quick response electrowetting displays[J]. SID Symposium Digest of Technical Papers, 2010, 41(1): 842-845. doi: 10.1889/1.3500607

    [7]

    Yi Z C, Shui L L, Wang L, et al. A novel driver for active matrix electrowetting displays[J]. Displays, 2015, 37: 86-93. doi: 10.1016/j.displa.2014.09.004

    [8]

    刘荣旺.基于FPGA实时DVI视频信号融合技术[D].成都: 电子科技大学, 2013.

    Liu R W. Fusion technology of real-time DVI video signal based on FPGA[D]. Chengdu: University of Electronic Science and Technology of China, 2013.CNKI:CDMD:2.1013.332034

    [9]

    Li F, Liu J H, Li G, et al. Displaying digital camera video on DVI monitor based on FPGA[J]. Laser & Infrared, 2011, 41(11): 1258-1262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgyhw201111019

    [10]

    Shukla S, Chaudhari J P, Nayak R J, et al. Design of High-Speed LVDS data communication link using FPGA[C]//International Conference on Information and Communication Technology for Intelligent Systems. Cham, 2017: 1-9.

    [11]

    Luo Z, Tang Q S, Chen K, et al. Design of reconfigurable video scaling systems based on FPGA[J]. Electronic Science & Technology, 2017, 30(7): 83-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkj201707023

    [12]

    Chen Y C, Chiu Y H, Lee W Y, et al. 56.3: A charge trapping suppression method for quick response electrowetting displays[J]. SID Symposium Digest of Technical Papers, 2012, 41(1): 842-845. http://d.old.wanfangdata.com.cn/Periodical/xdfx201303015

    [13]

    白鹏飞, 张小梅, 唐彪, 等.一种电润湿显示器灰度显示调制方法: 104867460A[P]. 2015-08-26.

    Bai P F, Zhang X M, Tang B, et al. A gray display modulation method for electrowetting display: 104867460A[P]. 2015-08-26.

    [14]

    刘海娜.基于STM32和FPGA的电润湿电子纸显示系统设计[D].广州: 华南师范大学, 2015.

    Liu H N. Design of electrowetting display system based on STM32 and FPGA[D]. Guangzhou: South China Normal University, 2015.

    [15]

    Liang C C, Chen Y C, Chiu Y H, et al. 27.3: A decoupling driving scheme for low voltage stress in driving a large-area high-resolution electrowetting display[J]. SID Symposium Digest of Technical Papers, 2009, 40(1): 375-378. doi: 10.1889/1.3256791

  • 加载中

(16)

计量
  • 文章访问数:  7887
  • PDF下载数:  3513
  • 施引文献:  0
出版历程
收稿日期:  2018-11-30
修回日期:  2019-01-29
刊出日期:  2019-06-25

目录

/

返回文章
返回