超高分辨力微型光谱仪的光学系统设计

王贤俊, 龙亚雪, 郑海燕, 等. 超高分辨力微型光谱仪的光学系统设计[J]. 光电工程, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228
引用本文: 王贤俊, 龙亚雪, 郑海燕, 等. 超高分辨力微型光谱仪的光学系统设计[J]. 光电工程, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228
Wang Xianjun, Long Yaxue, Zheng Haiyan, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228
Citation: Wang Xianjun, Long Yaxue, Zheng Haiyan, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228

超高分辨力微型光谱仪的光学系统设计

  • 基金项目:
    国家重点研发计划(2016YFF0101603)
详细信息
    作者简介:
    通讯作者: 郭汉明(1977-),男,博士,教授,主要从事超分辨率光学显微成像和光谱技术的研究。E-mail:hmguo@usst.edu.cn
  • 中图分类号: TN202

Design of optical system of miniature spectrometer for ultrahigh-resolution

  • Fund Project: Supported by National Kay R&D Program of China (2016YFF0101603)
More Information
  • 由于光谱仪的尺寸限制,微型光谱仪在满足一定光谱范围时,其分辨力往往难以小于0.1 nm。而一些特殊应用场合要求光谱仪不仅具有微小的尺寸,还要求具有极高的光谱分辨力。本文基于Zemax光学设计软件,通过选择合适的初始结构参数与评价函数,自动优化准直镜、聚焦镜、柱透镜、光栅,以及CCD间倾角和距离,设计出光谱分辨力高达0.05 nm,尺寸为90 mm×130 mm×40 mm的Czerny-Turner结构微型光谱仪。在此基础上优化出8个光栅倾斜角度,使微型光谱仪光谱分辨力在优于0.05 nm的同时,波段范围达到了820 nm~980 nm。所设计的光谱仪具有超高的光谱分辨力、微小的外形尺寸与适中的光谱范围等特点。

  • Overview: The spectrum can reflect the molecular structure information of substances and plays an important role in the fields of biology, chemistry, pharmaceutical materials, food industry and geological exploration. With the development of science and technology, a large number of frontier disciplines cross, infiltrate and fuse. A series of requirements that include wide spectrum, high resolution and miniaturization of spectrometer are proposed, thus the micro spectrometer has been concerned tremendously. Nowadays, the spectrometer has many light path structures. Czerny-Turner light path structure not only avoids the secondary or multiple diffraction, but also facilitates the optical element processing and the loading. It has a wide measuring range, simple structure, low cost and so on, so it is widely used in micro spectrometer. In recent years, researchers at home and abroad have done a lot of researches on the design and performance of micro-spectrometer. However, the resolution of spectrometer is generally more than 0.3 nm, which cannot meet some areas with high resolution. When researchers detect imaging spectrum in the atmosphere in the edge, the spectrometer shall have a high resolution of 0.06 nm~0.08 nm, owing to the kinds of particles in the atmosphere and multi-component and the atmospheric humidity. In the determination of impurity elements in steel, the determination of other elements is caused by spectral interference when it exists in the matrix elements, owing to the complexity of impurity element spectrum and various spectral lines. In this case, a high resolution of the spectrometer is highly desired. In addition, the small-volume spectrometer is portable, making it more convenient for police departments to detect drugs, law enforcement departments to detect factory sewage and geologists to detect mineral composition on the spot.

    We used Zemax (optical design software) to choose the initial structure parameters and evaluation function to automatically optimize angle and distance of focus lens, cylindrical lens and CCD to design an optical system of spectrometer of Czerny-Turner structure, whose resolution is better than 0.05 nm. Its numerical aperture is 0.1, and the volume of the system is 90 mm×130 mm×40 mm. On this basis, eight grating slanting angles were optimized, and the spectral resolution of the micro-spectrometer is better than 0.05 nm, while the band range reaches 820 nm~980 nm. The spectrometer has the characteristics of high resolution, wide spectrum and small volume.

  • 加载中
  • 图 1  M型CT光路结构图

    Figure 1.  The CT optical path structure of M-type

    图 2  优化后的光路图

    Figure 2.  The optimized optical path diagram

    图 3  881 nm、889 nm、897 nm的波长处的点列图分开情况

    Figure 3.  The separated points at the wavelength of 881 nm, 889 nm and 897 nm

    图 4  优化后的spot Y曲线

    Figure 4.  The optimized spot Y curve

    图 5  优化后的整体MTF曲线

    Figure 5.  The optimized MTF curves

    图 6  间隔为20 nm, 30 nm, 40 nm和50 nm的点列图

    Figure 6.  Spot diagrams with intervals of 20 nm, 30 nm, 40 nm and 50 nm

    表 1  光学元件特征参量

    Table 1.  Specification of the optical elements

    Optical element Parameters Value
    Collimating mirror f1 52.0825 mm
    D1 40 mm
    Condensing mirror f2 52.0825 mm
    D2 40 mm
    Diffraction grating λb 870 nm
    x 11 mm
    n 1200 line/mm
    Charge coupled device r 14.336 mm
    S 8 μm×200 μm
    下载: 导出CSV

    表 2  模拟参数

    Table 2.  Design table of the simulation parameters

    Optical element Decenter Y/mm Tilt about X/(°)
    Entrance slit 0 7.600
    Collimating mirror 10.904 34.000
    Diffraction grating 19.992 3.000
    Focusing mirror 37.000 30.808
    Charge coupled device 37.997 15.346
    下载: 导出CSV

    表 3  转动光栅后的实验结果

    Table 3.  Experimental results of rotating grating

    Wavelength range/nm Angle of grating rotation/(°) Maximum of RMS
    radius/μm
    Transmission efficiency of
    optical system in MTF curve
    820~840 31.55 3.7 0.27/0.68
    840~860 32.30 6.1 0.51/0.82
    860~880 33.15 3.8 0.67/0.82
    880~900 34.00 2.1 0.68/0.79
    900~920 34.85 2.3 0.67/0.71
    920~940 35.63 3.3 0.32/0.67
    940~960 36.55 4.2 0.49/0.71
    960~980 34.40 4.7 0.42/0.48
    下载: 导出CSV
  • [1]

    安岩, 刘英, 孙强, 等.便携式拉曼光谱仪的光学系统设计与研制[J].光学学报, 2013, 33(3): 0330001. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201303044.htm

    An Y, Liu Y, Sun Q, et al. Design and development of optical system for portable Raman spectrometer[J]. Acta Optica Sinica, 2013, 33(3): 0330001. http://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201303044.htm

    [2]

    Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11): 2893–2902. doi: 10.1016/j.envpol.2009.05.051

    [3]

    张文理, 田逢春, 赵贞贞, 等.空间外差光谱仪的干涉图校正[J].光电工程, 2017, 44(5): 488–497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    Zhang W L, Tian F C, Zhao Z Z, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488–497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    [4]

    孔鹏, 唐玉国, 巴音贺希格, 等.零像散宽波段平场全息凹面光栅的优化设计[J].光谱学与光谱分析, 2012, 32(2): 565–569. doi: 10.3964/j.issn.1000-0593(2012)02-0565-05

    Kong P, Tang Y G, Bayanheshig, et al. Optimization of broad-band flat-field holographic concave grating without astigmatism[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 565–569. doi: 10.3964/j.issn.1000-0593(2012)02-0565-05

    [5]

    薛庆生, 王淑荣, 鲁凤芹.星载车尔尼-特纳型成像光谱仪像差校正的研究[J].光学学报, 2009, 29(1): 35–40. http://d.old.wanfangdata.com.cn/Periodical/gxxb200901006

    Xue Q S, Wang S R, Lu F Q. Aberration correction of Czerny-Turner imaging spectrometer carried by satellite[J]. Acta Optica Sinica, 2009, 29(1): 35–40. http://d.old.wanfangdata.com.cn/Periodical/gxxb200901006

    [6]

    Xia G, Qu B X, Liu P, et al. Astigmatism-corrected miniature Czerny-turner spectrometer with freeform cylindrical lens[J]. Chinese Optics Letter, 2012, 10(8): 081201. doi: 10.3788/COL

    [7]

    刘康, 余飞鸿.双光束微型光谱仪[J].光子学报, 2013, 42(10): 1218–1223. http://d.old.wanfangdata.com.cn/Periodical/gzxb201310016

    Liu K, Yu F H. Double-beam miniature spectrometer system[J]. Acta Photonica Sinica, 2013, 42(10): 1218–1223. http://d.old.wanfangdata.com.cn/Periodical/gzxb201310016

    [8]

    徐明明, 江庆五, 刘文清, 等.一种新型双光栅光谱仪光学系统设计与优化[J].红外与激光工程, 2014, 43(1): 184–189. doi: 10.3969/j.issn.1007-2276.2014.01.033

    Xu M M, Jiang Q W, Liu W Q, et al. An Improved method for optical system design and optimization of double grating spectrometer[J]. Infrared and Laser Engineering, 2014, 43(1): 184–189. doi: 10.3969/j.issn.1007-2276.2014.01.033

    [9]

    薛庆生, 王淑荣, 李福田, 等.用于大气遥感探测的临边成像光谱仪[J].光学精密工程, 2010, 18(4): 823–830. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201004009

    Xue Q S, Wang S R, Li F T, et al. Limb imaging spectrometer for atmospheric remote sensing[J]. Optics and Precision Engineering, 2010, 18(4): 823–830. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201004009

    [10]

    叶擎昊, 姜通, 代海山, 等.热真空环境对空间外差光谱仪复原光谱的影响[J].光电工程, 2017, 44(7): 710–718. doi: 10.3969/j.issn.1003-501X.2017.07.007

    Ye Q H, Jiang T, Dai H S, et al. Influence of thermal-vacuum environment on the recovered spectrum of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(7): 710–718. doi: 10.3969/j.issn.1003-501X.2017.07.007

    [11]

    张志樱, 纪红玲.高分辨率ICP光谱仪在铌中杂质元素测定上的应用[J].现代仪器使用与维修, 1998(6): 29–30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800933740

    Zhang Z Y, Ji H L. Application of high resolution ICP spectrometry in determination of impurity elements in niobium[J]. Modern Instruments, 1998(6): 29–30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800933740

    [12]

    彭雪峰, 魏凯华, 刘艳萍, 等.高分辨率Czerny-Turner光谱仪光学系统设计[J].光子学报, 2014, 43(10): 1022003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201410025

    Peng X F, Wei K H, Liu Y P, et al. Optical system design of Czerny-Turner spectrometer with high resolution[J]. Acta Photonica Sinica, 2014, 43(10): 1022003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201410025

    [13]

    Lindblom P. Theory of the two-mirror plane-grating spectrograph[J]. Journal of the Optical Society of America, 1972, 62(6): 756–762. doi: 10.1364/JOSA.62.000756

    [14]

    Zhong X, Zhang Y, Jin G. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses[J]. Optics Communications, 2015, 338: 73–76. doi: 10.1016/j.optcom.2014.10.003

    [15]

    郭忠.微型拉曼光谱仪的结构设计与数据处理方法研究[D].重庆: 重庆大学, 2010: 21–22.

    Guo Z. Design the micro-Raman spectroscopy and study on data processing of Raman spectrum[D]. Chongqing: Chongqing University, 2010: 21–22.

    [16]

    林中, 范世福.光谱仪器学[M].北京:机械工业出版社, 1989.

    Lin Z, Fan S F. Spectroinstrumentation[M]. Beijing: China Machine Press, 1989.

    [17]

    叶必卿, 汪飞, 隋成华, 等. ZnO温度传感器光谱监测系统的设计[J].中国激光, 2011, 38(7): 0716001. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201107047.htm

    Ye B Q, Wang F, Sui C H, et al. Optical design of spectrum observation system in ZnO temperature sensor[J]. Chinese Journal of Lasers, 2011, 38(7): 0716001. http://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201107047.htm

  • 加载中

(6)

(3)

计量
  • 文章访问数:  10307
  • PDF下载数:  4590
  • 施引文献:  0
出版历程
收稿日期:  2018-04-26
修回日期:  2018-07-03
刊出日期:  2018-10-01

目录

/

返回文章
返回