Wang Xianjun, Long Yaxue, Zheng Haiyan, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228
Citation: Wang Xianjun, Long Yaxue, Zheng Haiyan, et al. Design of optical system of miniature spectrometer for ultrahigh-resolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180228. doi: 10.12086/oee.2018.180228

Design of optical system of miniature spectrometer for ultrahigh-resolution

    Fund Project: Supported by National Kay R&D Program of China (2016YFF0101603)
More Information
  • Because of the size limit of the spectrometer, the resolution of the micro-spectrometer is usually difficultly less than 0.1 nm when it meets certain spectral range. While some special applications require that the spectrometer not only has small size, but also requires extremely high spectral resolution. We used Zemax (optical design software) to choose the initial structure parameters and evaluation function to automatically optimize angle and distance of focus lens, cylindrical lens and CCD to design an optical system of spectrometer of Czerny-Turner structure. Its resolution is better than 0.05 nm, and the volume of the system is 90 mm×130 mm×40 mm. On this basis, eight grating slanting angles were optimized, and the spectral resolution of the micro-spectrometer is better than 0.05 nm, while the band range reaches 820 nm~980 nm. So the spectrometer has the characteristics of high resolution, wide spectrum and small volume.
  • 加载中
  • [1] 安岩, 刘英, 孙强, 等.便携式拉曼光谱仪的光学系统设计与研制[J].光学学报, 2013, 33(3): 0330001.

    Google Scholar

    An Y, Liu Y, Sun Q, et al. Design and development of optical system for portable Raman spectrometer[J]. Acta Optica Sinica, 2013, 33(3): 0330001.

    Google Scholar

    [2] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environmental Pollution, 2009, 157(11): 2893–2902. doi: 10.1016/j.envpol.2009.05.051

    CrossRef Google Scholar

    [3] 张文理, 田逢春, 赵贞贞, 等.空间外差光谱仪的干涉图校正[J].光电工程, 2017, 44(5): 488–497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    CrossRef Google Scholar

    Zhang W L, Tian F C, Zhao Z Z, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488–497. doi: 10.3969/j.issn.1003-501X.2017.05.003

    CrossRef Google Scholar

    [4] 孔鹏, 唐玉国, 巴音贺希格, 等.零像散宽波段平场全息凹面光栅的优化设计[J].光谱学与光谱分析, 2012, 32(2): 565–569. doi: 10.3964/j.issn.1000-0593(2012)02-0565-05

    CrossRef Google Scholar

    Kong P, Tang Y G, Bayanheshig, et al. Optimization of broad-band flat-field holographic concave grating without astigmatism[J]. Spectroscopy and Spectral Analysis, 2012, 32(2): 565–569. doi: 10.3964/j.issn.1000-0593(2012)02-0565-05

    CrossRef Google Scholar

    [5] 薛庆生, 王淑荣, 鲁凤芹.星载车尔尼-特纳型成像光谱仪像差校正的研究[J].光学学报, 2009, 29(1): 35–40.

    Google Scholar

    Xue Q S, Wang S R, Lu F Q. Aberration correction of Czerny-Turner imaging spectrometer carried by satellite[J]. Acta Optica Sinica, 2009, 29(1): 35–40.

    Google Scholar

    [6] Xia G, Qu B X, Liu P, et al. Astigmatism-corrected miniature Czerny-turner spectrometer with freeform cylindrical lens[J]. Chinese Optics Letter, 2012, 10(8): 081201. doi: 10.3788/COL

    CrossRef Google Scholar

    [7] 刘康, 余飞鸿.双光束微型光谱仪[J].光子学报, 2013, 42(10): 1218–1223.

    Google Scholar

    Liu K, Yu F H. Double-beam miniature spectrometer system[J]. Acta Photonica Sinica, 2013, 42(10): 1218–1223.

    Google Scholar

    [8] 徐明明, 江庆五, 刘文清, 等.一种新型双光栅光谱仪光学系统设计与优化[J].红外与激光工程, 2014, 43(1): 184–189. doi: 10.3969/j.issn.1007-2276.2014.01.033

    CrossRef Google Scholar

    Xu M M, Jiang Q W, Liu W Q, et al. An Improved method for optical system design and optimization of double grating spectrometer[J]. Infrared and Laser Engineering, 2014, 43(1): 184–189. doi: 10.3969/j.issn.1007-2276.2014.01.033

    CrossRef Google Scholar

    [9] 薛庆生, 王淑荣, 李福田, 等.用于大气遥感探测的临边成像光谱仪[J].光学精密工程, 2010, 18(4): 823–830.

    Google Scholar

    Xue Q S, Wang S R, Li F T, et al. Limb imaging spectrometer for atmospheric remote sensing[J]. Optics and Precision Engineering, 2010, 18(4): 823–830.

    Google Scholar

    [10] 叶擎昊, 姜通, 代海山, 等.热真空环境对空间外差光谱仪复原光谱的影响[J].光电工程, 2017, 44(7): 710–718. doi: 10.3969/j.issn.1003-501X.2017.07.007

    CrossRef Google Scholar

    Ye Q H, Jiang T, Dai H S, et al. Influence of thermal-vacuum environment on the recovered spectrum of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(7): 710–718. doi: 10.3969/j.issn.1003-501X.2017.07.007

    CrossRef Google Scholar

    [11] 张志樱, 纪红玲.高分辨率ICP光谱仪在铌中杂质元素测定上的应用[J].现代仪器使用与维修, 1998(6): 29–30.

    Google Scholar

    Zhang Z Y, Ji H L. Application of high resolution ICP spectrometry in determination of impurity elements in niobium[J]. Modern Instruments, 1998(6): 29–30.

    Google Scholar

    [12] 彭雪峰, 魏凯华, 刘艳萍, 等.高分辨率Czerny-Turner光谱仪光学系统设计[J].光子学报, 2014, 43(10): 1022003.

    Google Scholar

    Peng X F, Wei K H, Liu Y P, et al. Optical system design of Czerny-Turner spectrometer with high resolution[J]. Acta Photonica Sinica, 2014, 43(10): 1022003.

    Google Scholar

    [13] Lindblom P. Theory of the two-mirror plane-grating spectrograph[J]. Journal of the Optical Society of America, 1972, 62(6): 756–762. doi: 10.1364/JOSA.62.000756

    CrossRef Google Scholar

    [14] Zhong X, Zhang Y, Jin G. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses[J]. Optics Communications, 2015, 338: 73–76. doi: 10.1016/j.optcom.2014.10.003

    CrossRef Google Scholar

    [15] 郭忠.微型拉曼光谱仪的结构设计与数据处理方法研究[D].重庆: 重庆大学, 2010: 21–22.

    Google Scholar

    Guo Z. Design the micro-Raman spectroscopy and study on data processing of Raman spectrum[D]. Chongqing: Chongqing University, 2010: 21–22.

    Google Scholar

    [16] 林中, 范世福.光谱仪器学[M].北京:机械工业出版社, 1989.

    Google Scholar

    Lin Z, Fan S F. Spectroinstrumentation[M]. Beijing: China Machine Press, 1989.

    Google Scholar

    [17] 叶必卿, 汪飞, 隋成华, 等. ZnO温度传感器光谱监测系统的设计[J].中国激光, 2011, 38(7): 0716001.

    Google Scholar

    Ye B Q, Wang F, Sui C H, et al. Optical design of spectrum observation system in ZnO temperature sensor[J]. Chinese Journal of Lasers, 2011, 38(7): 0716001.

    Google Scholar

  • Overview: The spectrum can reflect the molecular structure information of substances and plays an important role in the fields of biology, chemistry, pharmaceutical materials, food industry and geological exploration. With the development of science and technology, a large number of frontier disciplines cross, infiltrate and fuse. A series of requirements that include wide spectrum, high resolution and miniaturization of spectrometer are proposed, thus the micro spectrometer has been concerned tremendously. Nowadays, the spectrometer has many light path structures. Czerny-Turner light path structure not only avoids the secondary or multiple diffraction, but also facilitates the optical element processing and the loading. It has a wide measuring range, simple structure, low cost and so on, so it is widely used in micro spectrometer. In recent years, researchers at home and abroad have done a lot of researches on the design and performance of micro-spectrometer. However, the resolution of spectrometer is generally more than 0.3 nm, which cannot meet some areas with high resolution. When researchers detect imaging spectrum in the atmosphere in the edge, the spectrometer shall have a high resolution of 0.06 nm~0.08 nm, owing to the kinds of particles in the atmosphere and multi-component and the atmospheric humidity. In the determination of impurity elements in steel, the determination of other elements is caused by spectral interference when it exists in the matrix elements, owing to the complexity of impurity element spectrum and various spectral lines. In this case, a high resolution of the spectrometer is highly desired. In addition, the small-volume spectrometer is portable, making it more convenient for police departments to detect drugs, law enforcement departments to detect factory sewage and geologists to detect mineral composition on the spot.

    We used Zemax (optical design software) to choose the initial structure parameters and evaluation function to automatically optimize angle and distance of focus lens, cylindrical lens and CCD to design an optical system of spectrometer of Czerny-Turner structure, whose resolution is better than 0.05 nm. Its numerical aperture is 0.1, and the volume of the system is 90 mm×130 mm×40 mm. On this basis, eight grating slanting angles were optimized, and the spectral resolution of the micro-spectrometer is better than 0.05 nm, while the band range reaches 820 nm~980 nm. The spectrometer has the characteristics of high resolution, wide spectrum and small volume.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(10297) PDF downloads(4586) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint