余弦-超高斯脉冲的演化特性研究

邹德峰, 李晓辉, 柴通. 余弦-超高斯脉冲的演化特性研究[J]. 光电工程, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096
引用本文: 邹德峰, 李晓辉, 柴通. 余弦-超高斯脉冲的演化特性研究[J]. 光电工程, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096
Zou Defeng, Li Xiaohui, Chai Tong. Investigation of the cosine-super Gaussian pulses evolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096
Citation: Zou Defeng, Li Xiaohui, Chai Tong. Investigation of the cosine-super Gaussian pulses evolution[J]. Opto-Electronic Engineering, 2018, 45(10): 180096. doi: 10.12086/oee.2018.180096

余弦-超高斯脉冲的演化特性研究

  • 基金项目:
    国家自然科学基金(61605106);中国科学院瞬态光学与光子学国家重点实验室开放性研究基金(SKLST201401);陕西师范大学启动基金(1112010209, 1110010717)资助
详细信息
    作者简介:
    通讯作者: 李晓辉(1983-),男,教授,主要从事超短脉冲激光器的研究。E-mail:lixiaohui@snnu.edu.cn
  • 中图分类号: O437; TN253

Investigation of the cosine-super Gaussian pulses evolution

  • Fund Project: Supported by National Natural Science Foundation of China (61605106), the Open Research Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (SKLST201401), and Starting Grants of Shaanxi Normal University (1112010209, 1110010717)
More Information
  • 本文研究了余弦-超高斯(CSG)脉冲在光纤中的演化特性并对CSG脉冲在光纤中的传输过程进行了数值研究。得到了脉冲的初始相位φ0和脉冲阶数m对脉冲传输过程及其演化规律的影响。结果表明,增大φ0值到80 rad时的一阶余弦-超高斯脉冲可以在相对较长的光纤中实现脉冲压缩;而高阶余弦-超高斯脉冲在经历较短的脉冲压缩后,随即展宽。脉冲阶数越高,其脉冲压缩所经历光纤长度越短。本文还将余弦-超高斯脉冲、简单高斯脉冲和双曲正割脉冲进行对比,对比结果表明双曲正割脉冲展宽速度最快,简单高斯脉冲次之,而余弦-超高斯脉冲的展宽速度最慢。所提出的余弦-超高斯脉冲对光纤色散不敏感,该研究对于实际中要得到大容量,长距离通讯用的特殊脉冲的研究提供了一定的理论依据。

  • Overview: The evolution of cosine-super Gaussian pulses propagating in a conventional single mode fiber (SMF) has been proposed. The propagation properties of cosine-super Gaussian pulses are numerically studied by using split-step Fourier method, and the effects of initial phase φ0 and order of the pulse m are analyzed because of their decisive roles in the process of pulse propagation. First, we discuss the effects of two parameters φ0 and m on the distributions of the cosine-super Gaussian pulse on the source plane. When the pulse order m is fixed, the optical pulse will be strengthened by the cosine function modulation with the increase of φ0. The sidelobes of the cosine function modulation are gradually appeared on the both sides of the pulse. When initial phase φ0 is fixed, the ability of the cosine-super Gaussian pulse to resist cosine modulation is strengthened, and the cosine modulated sidelobes will not appear. In the actual transmitting process, the pulse with high energy will experience the splitting of the pulse owing to the nonlinear effects in the fiber. The cosine modulated sidelobes of the cosine-super Gaussian pulse will be closer to the actual propagation characteristics of the pulse. After that, the effects of two parameters initial phase φ0 and order of the pulse m propagation process of the cosine-super Gaussian pulse are discussed, respectively. Here the pulse width broaden ratio is defined as that the ratio between the full width at half maximum of output pulse and the input pulse. By observing the pulse width broaden ratio curses, we can see that when φ0 is increased to 80 rad, the first order cosine-super Gaussian pulse will be compressed in a relatively long fiber, and then broaden monotonically; the higher order cosine-super Gaussian pulses will experience a short compression first, and then broaden monotonically. Especially, the third-order cosine-super Gaussian pulse is selected and we find that under the combined effects of the φ0 and m, the initial incident pulse no longer has the sidelobes. The third-order cosine-super Gaussian pulse turns to the multi-model structure from the single peak structure, and experiences the compression at the same time. In addition, the cosine-super Gaussian pulses are compared with simple Gaussian pulses and Hyperbolic secant pulses. The results indicate that the Hyperbolic secant pulses broaden fastest; the simple Gaussian pulses broaden secondly; cosine-super Gaussian pulses broaden slowest, which are most insensitive to the dispersion of fiber. The research work will pave a way to realize a special pulse in large-capacity, and long-range communications.

  • 加载中
  • 图 1  不同φ0时入射脉冲的入射场分布。(a) m=1; (b) m=3

    Figure 1.  Incident pulses field distribution of different φ0. (a) m=1; (b) m=3

    图 2  不同m入射脉冲的入射场分布

    Figure 2.  Incident pulses field distribution of different m

    图 3  不同φ0时的一阶CSG脉冲展宽率曲线

    Figure 3.  1st order CSG pulses PBR graphs under different φ0

    图 4  φ0=80 rad时的脉冲三维演化

    Figure 4.  Three-dimensional evolution of pulses at φ0=80 rad

    图 5  三阶余弦-超高斯脉冲演化

    Figure 5.  The evolution of 3rd order CSG pulses

    图 6  不同m下的CSG脉冲展宽率曲线

    Figure 6.  CSG pulses PBR curves under different m

    图 7  与简单高斯和双曲正割脉冲进行对比

    Figure 7.  Comparison with the simple Gaussian and hyperbolic secant pulses

  • [1]

    Chu Z Z, Liu J, Guo Z N, et al. 2 μm passively Q-switched laser based on black phosphorus[J]. Optical Materials Express, 2016, 6(7): 2374-2379. doi: 10.1364/OME.6.002374

    [2]

    Lu S B, Ge Y G, Sun Z B, et al. Ultrafast nonlinear absorption and nonlinear refraction in few-layer oxidized black phosphorus[J]. Photonics Research, 2016, 4(6): 286-292. doi: 10.1364/PRJ.4.000286

    [3]

    Yao Y H, Xu C, Zheng Y, et al. Femtosecond laser-induced upconversion luminescence in Rare-Earth ions by nonresonant multiphoton absorption[J]. The Journal of Physical Chemistry A, 2016, 120(28): 5522-5526. doi: 10.1021/acs.jpca.6b04444

    [4]

    赵玉辉, 郑义, 张玉萍, 等.啁啾高斯脉冲在光纤中传输的脉冲展宽研究[J].光电子技术, 2006, 26(3): 177-180, 184. doi: 10.3969/j.issn.1005-488X.2006.03.007

    Zhao Y H, Zheng Y, Zhang Y P, et al. The study of pulse broadening of Chirped Gaussian pulses in fiber[J]. Optoelectronic Technology, 2006, 26(3): 177-180, 184. doi: 10.3969/j.issn.1005-488X.2006.03.007

    [5]

    王跃, 李永倩, 李晓娟, 等.单模光纤中无初始啁啾超高斯脉冲特性的研究[J].光通信研究, 2015, 41(1): 17-19. doi: 10.13756/j.gtxyj.2015.01.006

    Wang Y, Li Y Q, Li X J, et al. Research on characteristics of super-Gaussian optical pulses without initial chirps in single-mode fibers[J]. Study on Optical Communications, 2015, 41(1): 17-19. doi: 10.13756/j.gtxyj.2015.01.006

    [6]

    邹其徽, 吕百达.贝塞尔-高斯脉冲光束在色散介质中的时间和光谱特性[J].强激光与粒子束, 2006, 18(3): 368-371. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=QJGY200603004&dbname=CJFD&dbcode=CJFQ

    Zou Q H, Lü B D. Temporal and spectral properties of Bessel-Gauss pulsed beams in dispersive media[J]. High Power Laser and Particle Beams, 2006, 18(3): 368-371. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=QJGY200603004&dbname=CJFD&dbcode=CJFQ

    [7]

    刘浩, 王黎, 高晓蓉.余弦-高斯激光脉冲在单模光纤中的色散效应[J].光电工程, 2005, 32(12): 30-33. doi: 10.3969/j.issn.1003-501X.2005.12.008

    Liu H, Wang L, Gao X R. Dispersion effect of Cos-Gaussian laser pulses in single mode fiber[J]. Opto-Electronic Engineering, 2005, 32(12): 30-33. doi: 10.3969/j.issn.1003-501X.2005.12.008

    [8]

    赵晗, 宋振明, 林俞先.超短艾里脉冲传输过程中色散效应的分析[J].光学学报, 2015, 35(S1): s132001. http://cdmd.cnki.com.cn/Article/CDMD-10058-1016095184.htm

    Zhao H, Song Z M, Lin Y X. Dispersion effect on Ultrashort Airy Pulse Propagation[J]. Acta Optica Sinica, 2015, 35(S1): s132001. http://cdmd.cnki.com.cn/Article/CDMD-10058-1016095184.htm

    [9]

    尹国路, 娄淑琴.基于对称分步傅里叶法研究光纤中GVD和SPM相互作用[C]//先进光学技术及其应用研讨会论文集(下册), 2009.

    Yin G L, Lou S Q. Study of interaction of GVD and SPM in fiber with symmetric split-step Fourier method[C]//Proceedings of the Symposium on Advanced Optical Technology and Applications (Part 2), 2009.

    [10]

    Agrawal G P. 非线性光纤光学原理及应用[M].贾东方, 余震红, 译. 3版.北京: 电子工业出版社, 2002.

    Agrawal G P. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics[M]. Jia D F, Yu Z H, trans. 3rd ed. Beijing: Publishing House of Electronics Industry, 2002.

    [11]

    Hamza M Y, Saeed S, Sarwar N, et al. Investigations for the evolution behavior of cos-gauss pulse in dispersion dominant regime of single mode optical fiber[J]. Engineering Letters, 2014, 22(2): 83.

    [12]

    李均, 黄德修, 张新亮.光纤传输模型的数值计算研究[J].光电子技术与信息, 2003, 16(2): 9-12. http://d.old.wanfangdata.com.cn/Periodical/gdzjsyxx200302003

    Li J, Huang D X, Zhang X L. Numerical analysis of fiber propagation model[J]. Optoelectronic Technology & Information, 2003, 16(2): 9-12. http://d.old.wanfangdata.com.cn/Periodical/gdzjsyxx200302003

    [13]

    赵磊, 隋展, 朱启华, 等.分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析[J].物理学报, 2009, 58(7): 4731-4737. doi: 10.3321/j.issn:1000-3290.2009.07.056

    Zhao L, Sui Z, Zhu Q H, et al. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr dinger equation[J]. Acta Physica Sinica, 2001, 58(7): 4731-4737. doi: 10.3321/j.issn:1000-3290.2009.07.056

    [14]

    李莹, 崔庆丰.基于分步傅里叶变换法对非线性薛定谔方程的数值仿真[J].长春理工大学学报(自然科学版), 2011, 34(1): 43-45, 60. doi: 10.3969/j.issn.1672-9870.2011.01.013

    Li Y, Cui Q F. The numerical simulation to nonlinear Schrodinger equation based on SSFT[J]. Journal of Changchun University of Science and Technology, 2011, 34(1): 43-45, 60. doi: 10.3969/j.issn.1672-9870.2011.01.013

    [15]

    郑宏军, 刘山亮, 黎昕, 等.初始啁啾对双曲正割光脉冲线性传输特性的影响[J].物理学报, 2007, 56(4):2286-2292. doi: 10.3321/j.issn:1000-3290.2007.04.072

    Zheng H J, Liu S L, Li X, et al. Effect of initial frequency chirp on the linear propagation characteristics of the hyperbolic secant optical pulse[J]. Acta Physica Sinica, 2007, 56(4): 2286-2292. doi: 10.3321/j.issn:1000-3290.2007.04.072

  • 加载中

(7)

计量
  • 文章访问数:  9186
  • PDF下载数:  2971
  • 施引文献:  0
出版历程
收稿日期:  2018-03-02
修回日期:  2018-06-13
刊出日期:  2018-10-01

目录

/

返回文章
返回