分布式多参数光纤传感技术研究进展

况洋, 吴昊庭, 张敬栋, 等. 分布式多参数光纤传感技术研究进展[J]. 光电工程, 2018, 45(9): 170678. doi: 10.12086/oee.2018.170678
引用本文: 况洋, 吴昊庭, 张敬栋, 等. 分布式多参数光纤传感技术研究进展[J]. 光电工程, 2018, 45(9): 170678. doi: 10.12086/oee.2018.170678
Kuang Yang, Wu Haoting, Zhang Jingdong, et al. Advances of key technologies on distributed fiber system for multi-parameter sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170678. doi: 10.12086/oee.2018.170678
Citation: Kuang Yang, Wu Haoting, Zhang Jingdong, et al. Advances of key technologies on distributed fiber system for multi-parameter sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170678. doi: 10.12086/oee.2018.170678

分布式多参数光纤传感技术研究进展

  • 基金项目:
    科技部重点项目计划(2016YFC0801202);国家自然科学基金资助项目(61635004, 61377066, 61705024);重庆市科委杰青支持项目(CSTC2014JCYJJQ40002);中央高校基础研究基金资助项目(106112017CDJZRPY0005)
详细信息
    作者简介:
    通讯作者: 朱涛(1976-),男,教授,博士生导师,主要从事激光器及调控技术、光电功能材料及功能器件,以及光纤传感技术等方面的研究。E-mail: zhutao@cqu.edu.cn
  • 中图分类号: O436.3;TN253

Advances of key technologies on distributed fiber system for multi-parameter sensing

  • Fund Project: Supported by the Key Research and Development Program of Ministry of Science and Technology (2016YFC0801202), the Project of Natural Science Foundation of China (61635004, 61377066, and 61705024), the Science Fund for Distinguished Young Scholars of Chongqing (CSTC2014JCYJJQ40002), and the Fundamental Research Funds for the Central Universities (106112017CDJZRPY0005)
More Information
  • 分布式光纤传感系统利用光纤既能传感又能传输信号的特性实现对光纤沿线振动、应变、温度等物理量的长距离连续测量,在周界安防、电网管道监控、大型结构健康监测等领域具有十分广阔的应用前景。上述的实际应用中,事件或故障的发生通常表现为振动、应变以及温度等物理量的改变,振动的探测频响高低、应变探测的动态响应能力以及多参数的同时测量都会影响事件的定位或预警。因此,振动的宽频测量、应变的动态测量以及多参数测量,对事件定位和信息完整捕获起着至关重要的作用,能够推动分布式光纤传感的应用发展。本文介绍了近年来在分布式光纤传感系统中,基于瑞利散射的宽频振动测量、基于布里渊散射的应变动态测量以及基于多散射的多参数测量取得的研究进展。

  • Overview: Distributed fiber sensing system can realize long-distance and continuous measurement with a tremendous potential of applications to the fields such as perimeter security, pipeline monitoring and structural health diagnosis for large infrastructure, whose faults or intrusions constantly cause changes of multiple physical parameters, namely vibration, strain and temperature. In addition, the alert and location abilities are also determined by the frequency response range of vibration and the dynamic response ability of strain, which are critical to obtain full information of external events. According to recent research progress in distributed fiber sensing system, wide-frequency vibration measurement based on Rayleigh scattering, dynamic strain measurement based on Brillouin scattering and multi-parameter measurement based on multiple scattering mechanisms are proposed, respectively.

    Distributed vibration sensing system based on the combination of Mach-Zehnder interferometer (MZI) and φ-OTDR can realize wide frequency response range and high-precision location. In order to solve the trade-off between the highest frequency response range and signal to noise ratio of location signal, the time-division multiplexing technology based on the merits of MZI and φ-OTDR is proposed. In addition, frequency-division multiplexing technology based on φ-OTDR system can break through the limitation of sensing distance on frequency response range. However, it poses considerable difficulties in realizing the dynamic measurement of vibration-induced strain with large strain range in conventional φ-OTDR system. Through fixing the frequency of probe light at the half height of Brillouin gain spectrum (BGS), slope-assisted technology based on Brillouin optical time domain analysis (BOTDA) system can avoid excessive time of sweeping frequency and improve the dynamic response ability. Compared with slope-assisted technology, the fast BOTDA technology is proposed to improves the dynamic response ability without shortening the dynamic range. Above all, the OTDR system based on Rayleigh scattering and spontaneous Raman scattering has been used to measure vibration and temperature along sensing fiber. Interestingly, the distributed fiber sensing system by integrating φ-OTDR and Brillouin optical time domain reflectometry is proposed for simultaneous multi-parameter detection, including vibration, strain and temperature.

  • 加载中
  • 图 1  光纤中三种自发散射的频谱图[31]

    Figure 1.  The frequency spectrum of three typical spontaneous backscattering[31]

    图 2  基于脉冲调制且融合φ-OTDR与MZI的分布式光纤传感实验系统图[21]

    Figure 2.  The experimental setup of distributed optical fiber sensing system based on both φ-OTDR and MZI with modulated pulse[21]

    图 3  不同偏置电压下的定位信息。(a),(b),(c)和(d)是任意信号发生器的偏置电压分别为50 mV,100 mV,150 mV与200 mV时的实验结果[21]

    Figure 3.  The location information. (a), (b), (c) and (d) were tested under 50 mV, 100 mV, 150 mV and 200 mV, respectively[21]

    图 4  不同电压偏置量下磕铅笔振动的频率响应。(a),(b),(c)和(d)是任意信号发生器的偏置电压分别为50 mV,100 mV,150 mV与200 mV时的实验结果[21]

    Figure 4.  The frequency response of pencil-break. (a), (b), (c) and (d) were tested under 50 mV, 100 mV, 150 mV and 200 mV, respectively[21]

    图 5  基于时分复用并融合φ-OTDR与MZI的分布式光纤传感实验系统图[23]

    Figure 5.  The experimental setup of distributed optical fiber sensing system based on both φ-OTDR and MZI with TDM technology[23]

    图 6  磕铅笔模拟高频振动。(a)有磕铅笔振动信号及没有磕铅笔振动信号频响的叠加;(b)磕铅笔振动的位置信号[23]

    Figure 6.  The experimental results of detection of pencil-break. (a) Frequency response of with and without pencil-break; (b) Location of vibration[23]

    图 7  (a) 注入传感光纤中的N个不同波长光脉冲组成的脉冲序列;(b)一个测量周期内,N个不同波长的光脉冲在传感光纤内产生的后向瑞利散射[24]

    Figure 7.  (a) Injected pulse train; (b) The discrete model of N backscattering traces within one measurement interval after N pulses carried by different wavelengths are injected into sensing fiber[24]

    图 8  基于频率复用技术的φ-OTDR系统实验图[24]

    Figure 8.  The φ-OTDR system based on FDM technology[24]

    图 9  压电陶瓷振动频率为25 kHz的实验结果。(a)未经过平均处理的曲线组中取出的振动位置处时域信号;(b)频率响应频谱图[24]

    Figure 9.  The experimental result of PZT with 25 kHz vibration frequency. (a) Time-domain vibration signal; (b) Spectrum of frequency response[24]

    图 10  斜率辅助技术的原理图[27]

    Figure 10.  The principle waveform of the slope assisted technique[27]

    图 11  SA-BOTDA传感系统实验图[27]

    Figure 11.  The experimental diagram of SA-BOTDA[27]

    图 12  12.3 Hz的振动信号测试图[27]

    Figure 12.  The test diagram of 12.3 Hz vibration signal[27]

    图 13  Fast BOTDA传感系统实验图[28]

    Figure 13.  The experimental diagram of fast BOTDA[28]

    图 14  振动信号测试图。(a)布里渊增益谱;(b)洛伦兹拟合得到的拟合结果[28]

    Figure 14.  The test diagram of vibration signal. (a) Brillouin gain spectrum; (b) Fitting result of Lorentzian nonlinear fitting[28]

    图 15  SF-BOTDA传感系统实验图[29]

    Figure 15.  The experimental diagram of SF-BOTDA[29]

    图 16  振动信号测试图[29]

    Figure 16.  The test diagram of vibration signal[29]

    图 17  (a) 基于结合瑞利散射及拉曼散射的分布式光纤传感实验系统图;(b)波分复用模块示意图[31]

    Figure 17.  (a) The experimental setup of distributed optical fiber sensing system based on both Rayleigh and Raman backscattering; (b) The schematic of wavelength division multiplexing device[31]

    图 18  (a) 瑞利散射信号移动差分后的信号叠加图;(b)振动空间分辨率;(c)振动信号频率为10 kHz的时域图;(d)振动信号频率为10 kHz的频域图;(e)传感光纤的温度分布曲线;(f)温度空间分辨率[31]

    Figure 18.  (a) The superimposed moving differential signals of Rayleigh traces; (b) Vibration spatial resolution; (c) Time domain diagram of vibration signal of 10 kHz; (d) Frequency domain diagram of vibration signal of 10 kHz; (e) Temperature distribution curve along the sensing fiber; (f) The spatial resolution of temperature[31]

    图 19  (a) φ-OTDR复合系统原理图;(b) 10 km传感光纤的布里渊频移图谱;(c)在传感光纤末端同时施加温度、应变以及振动后的布里渊频移谱[32]

    Figure 19.  (a) The system diagram of φ-BOTDR; (b) Brillouin frequency shift of 10 km sensing fiber; (c) Brillouin frequency shift of end section of the sensing fiber when applied temperate shift, strain and vibration simultaneously[32]

    图 20  (a) 当加载100 Hz振动信号时光纤末端φ-OTDR散射信号;(b)加载500 Hz,1 kHz,3 kHz和4.8 kHz的振动时,振动点信号的快速傅里叶变换频谱[32]

    Figure 20.  (a) φ-OTDR traces at the end section of the sensing fiber when the PZT is driven by 100 Hz; (b) FFT transform spectra of the vibration point when 500 Hz, 1 kHz, 3 kHz and 4.8 kHz sinusoidal signals are applied to the PZT, respectively[32]

  • [1]

    张旭苹.全分布式光纤传感技术[M].北京:科学出版社, 2013: 1-3.

    Zhang X P. Distributed Fiber Sensing Technology[M]. Beijing: Science Press, 2013: 1-3.

    [2]

    Kiźlik B. Fibre optic distributed sensor in Mach-Zehnder interferometer configuration[C]//Modern Problems of Radio Engineering, Telecommunications and Computer Science, 2002.

    [3]

    Sun Q Z, Liu D M, Wang J, et al. Distributed fiber-optic vibration sensor using a ring Mach-Zehnder interferometer[J]. Optics Communications, 2008, 281(6): 1538-1544. doi: 10.1016/j.optcom.2007.11.055

    [4]

    Zhu T, Xiao X H, He Q, et al. Enhancement of SNR and spatial resolution in φ-OTDR system by using two-dimensional edge detection method[J]. Journal of Lightwave Technology, 2013, 31(17): 2851-2856. doi: 10.1109/JLT.2013.2273553

    [5]

    Dong Y K, Xu P B, Fu C, et al. 1200℃ high-temperature distributed Brillouin optical fiber sensing based on photonics crystal fiber[J]. Proceedings of SPIE, 2015, 9634: 963485. doi: 10.1117/12.2205329

    [6]

    Kim Y H, Song K Y. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification[J]. Optics Express, 2017, 25(13): 14098-14105. doi: 10.1364/OE.25.014098

    [7]

    Bolognini G, Hartog A. Raman-based fibre sensors: trends and applications[J]. Optical Fiber Technology, 2013, 19(6): 678-688. doi: 10.1016/j.yofte.2013.08.003

    [8]

    朱程辉, 赵益, 王建平, 等.光纤入侵行为融合特征的集成识别[J].光电工程, 2016, 43(12): 6-12. doi: 10.3969/j.issn.1003-501X.2016.12.002

    Zhu C H, Zhao Y, Wang J P, et al. Ensemble recognition of fiber intrusion behavior based on blending features[J]. Opto-Electronic Engineering, 2016, 43(12): 6-12. doi: 10.3969/j.issn.1003-501X.2016.12.002

    [9]

    饶云江.长距离分布式光纤传感技术研究进展[J].物理学报, 2017, 66(7): 139-157. http://d.old.wanfangdata.com.cn/Periodical/wlxb201707012

    Rao Y J. Recent progress in ultra-long distributed fiber-optic sensing[J]. Acta Physica Sinica, 2017, 66(7): 139-157. http://d.old.wanfangdata.com.cn/Periodical/wlxb201707012

    [10]

    Ye X W, Su Y H, Han J P. Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review[J]. The Scientific World Journal, 2014, 2014: 652329. https://www.hindawi.com/journals/tswj/2014/652329/

    [11]

    Khalid M, David K P. A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications[J]. Sensors, 2017, 17(11): 2511-2535. doi: 10.3390/s17112511

    [12]

    Inaudi D, Glisic B. Long-range pipeline monitoring by distributed fiber optic sensing[J]. Journal of Pressure Vessel Technology, 2010, 132(1): 763-772. http://d.old.wanfangdata.com.cn/NSTLQK/10.1115-1.3062942/

    [13]

    Tejedor J, Martins H F, Piote D, et al. Toward prevention of pipeline integrity threats using a smart fiber-optic surveillance system[J]. Journal of Lightwave Technology, 2016, 34(19): 4445-4453. doi: 10.1109/JLT.2016.2542981

    [14]

    Peng F, Duan N, Rao Y J, et al. Real-time position and speed monitoring of trains using phase-sensitive OTDR[J]. IEEE Photonics Technology Letters, 2014, 26(20): 2055-2057. doi: 10.1109/LPT.2014.2346760

    [15]

    Peng F, Wu H, Jia X H, et al. Ultra-long high-sensitivity φ-OTDR for high spatial resolution intrusion detection of pipelines[J]. Optics Express, 2014, 22(11): 13804-13810. doi: 10.1364/OE.22.013804

    [16]

    Maraval D, Gabet R, Jaouen Y, et al. Dynamic optical fiber sensing with brillouin optical time domain reflectometry: Application to pipeline vibration monitoring[J]. Journal of Lightwave Technology, 2017, 35(16): 3296-3302. doi: 10.1109/JLT.2016.2614835

    [17]

    陈福昌, 戴杰, 余超群, 等.光纤环校正双端探测分布式拉曼光纤传感系统[J].光电工程, 2016, 43(8): 33-38. doi: 10.3969/j.issn.1003-501X.2016.08.006

    Chen F C, Dai J, Yu C Q, et al. Distributed raman fiber sensing system with fiber-ring calibration and double-ended probe[J]. Opto-Electronic Engineering, 2016, 43(8): 33-38. doi: 10.3969/j.issn.1003-501X.2016.08.006

    [18]

    Lu Y L, Zhu T, Chen L, et al. Distributed vibration sensor based on coherent detection of phase-OTDR[J]. Journal of Lightwave Technology, 2010, 28(22): 3243-3249. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0220013627

    [19]

    Bergman A, Yaron L, Langer T, et al. Dynamic and distributed slope-assisted fiber strain sensing based on optical time-domain analysis of brillouin dynamic gratings[J]. Journal of Lightwave Technology, 2015, 33(12): 2611-2616. doi: 10.1109/JLT.2014.2371473

    [20]

    Fang J, Xu P B, Dong Y K, et al. Single-shot distributed Brillouin optical time domain analyzer[J]. Optics Express, 2017, 25(13): 15188-15198. doi: 10.1364/OE.25.015188

    [21]

    Zhu T, He Q, Xiao X H, et al. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution[J]. Optics Express, 2013, 21(3): 2953-2963. doi: 10.1364/OE.21.002953

    [22]

    何茜. 基于φ-OTDR的光纤分布式宽频振动传感技术研究[D]. 重庆: 重庆大学, 2015.

    He Q. Study on the fiber optical distributed wide-frequency vibration sensing based on φ-OTDR[D]. Chongqing: Chongqing University, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10611-1016704732.htm

    [23]

    He Q, Zhu T, Xiao X H, et al. All fiber distributed vibration sensing using modulated time-difference pulses[J]. IEEE Photonics Technology Letters, 2013, 25(20): 1955-1957. doi: 10.1109/LPT.2013.2276124

    [24]

    He Q, Zhu T, Zhou J, et al. Frequency response enhancement by periodical nonuniform sampling in distributed sensing[J]. IEEE Photonics Technology Letters, 2015, 27(20): 2158-2161. doi: 10.1109/LPT.2015.2455525

    [25]

    He H J, Shao L Y, Li Z L, et al. Distributed vibration sensing with high frequency response based on frequency division multiplexing[C]//Proceedings of 2016 Optical Fiber Communications Conference and Exhibition, 2016.

    [26]

    Yang G Y, Fan X Y, Liu Q W, et al. Increasing the frequency response of direct-detection phase-sensitive OTDR by using frequency division multiplexing[C]//Proceedings of 2017 25th Optical Fiber Sensors Conference, 2017: 103238F.

    [27]

    Bernini R, Minardo A, Zeni L. Dynamic strain measurement in optical fibers by stimulated Brillouin scattering[J]. Optics Letters, 2009, 34(17): 2613-2615. doi: 10.1364/OL.34.002613

    [28]

    Peled Y, Motil A, Yaron L, et al. Slope-assisted fast distributed sensing in optical fibers with arbitrary Brillouin profile[J]. Optics Express, 2011, 19(21): 19845-19854. doi: 10.1364/OE.19.019845

    [29]

    Jin C, Guo N, Feng Y H, et al. Scanning-free BOTDA based on ultra-fine digital optical frequency comb[J]. Optics Express, 2015, 23(4): 5277-5284. doi: 10.1364/OE.23.005277

    [30]

    Hu J H, Xia L, Yang L, et al. Strain-induced vibration and temperature sensing BOTDA system combined frequency sweeping and slope-assisted techniques[J]. Optics Express, 2016, 24(12): 13610-13620. doi: 10.1364/OE.24.013610

    [31]

    周进. 多参数分布式光纤传感系统关键技术研究[D]. 重庆: 重庆大学, 2015.

    Zhou J. Research on the key techniques of multiple parameters of the distributed optical sensing system[D]. Chongqing: Chongqing University, 2015.http://cdmd.cnki.com.cn/Article/CDMD-10611-1015967459.htm

    [32]

    Zhang J D, Zhu T, Zhou H, et al. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses[J]. Optics Express, 2016, 24(24): 27482-27493. doi: 10.1364/OE.24.027482

    [33]

    Peng F, Cao X L. A hybrid φ/B-OTDR for simultaneous vibration and strain measurement[J]. Photonic Sensors, 2016, 6(2): 121-126. doi: 10.1007/s13320-016-0289-9

  • 加载中

(20)

计量
  • 文章访问数:  10641
  • PDF下载数:  5280
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-02-26
刊出日期:  2018-09-01

目录

/

返回文章
返回