球幕点目标投影跟踪系统的精确标定方法

蔡怀宇, 丁蕾, 黄战华, 等. 球幕点目标投影跟踪系统的精确标定方法[J]. 光电工程, 2018, 45(8): 170565. doi: 10.12086/oee.2018.170656
引用本文: 蔡怀宇, 丁蕾, 黄战华, 等. 球幕点目标投影跟踪系统的精确标定方法[J]. 光电工程, 2018, 45(8): 170565. doi: 10.12086/oee.2018.170656
Cai Huaiyu, Ding Lei, Huang Zhanhua, et al. An accurate calibration method of the ball screen projection point targets tracking system[J]. Opto-Electronic Engineering, 2018, 45(8): 170565. doi: 10.12086/oee.2018.170656
Citation: Cai Huaiyu, Ding Lei, Huang Zhanhua, et al. An accurate calibration method of the ball screen projection point targets tracking system[J]. Opto-Electronic Engineering, 2018, 45(8): 170565. doi: 10.12086/oee.2018.170656

球幕点目标投影跟踪系统的精确标定方法

详细信息
    作者简介:
    通讯作者: 丁蕾(1992-),女,硕士研究生,主要从事光电检测技术方面的研究。E-mail:linda_dinglei@tju.edu.cn
  • 中图分类号: P207;TP391.41

An accurate calibration method of the ball screen projection point targets tracking system

More Information
  • 针对球幕点目标投影与跟踪系统中多个子系统相对位置关系探测复杂的问题,提出了一种适合现场测量的精确标定方法。将球幕作为世界坐标系,利用子系统对球幕球心标定,得到子系统在球幕坐标系下的坐标,从而实现目标点在子系统之间的坐标转换。研究了球幕球心标定原理及标定点投射方法,建立了球幕球心在标定系统坐标系下的高斯-马尔科夫(G-M)求解模型,仿真分析了影响标定误差的因素。结果表明,通过减小子系统到球心的距离和改进投射的标定点空间分布能够有效提高标定精度,最后提出基于整体最小二乘(TLS)的球幕标定方法。根据仿真结果,设计模拟球幕和标定器并完成实验,标定结果满足现场快速精确标定的要求。

  • Overview: The ball screen projection point targets tracking system is a hardware-in-loop simulation system, which is used for testing the tracking and hitting performance of tanks or artillery. The testing can be achieved completely under laboratory, so it has become a popular research topic. It is multiple subsystems coordination work, so the data needs convert into the same coordinate system to give the control and evaluation by frequent coordinate transformation between the subsystems. As important parameters of coordinate transformation, the precision and maneuverability of the calibration result of subsystems relative position will affect the using range and test conditions of the simulation system. Generally, the distance date between the subsystems and the ball are measured by man or directly adopted the design scheme. However, the error is unavoidable in the field installation process. The relative positional relation cannot be exactly the same as the design scheme. In addition, the center of the ball screen is a virtual point and the manual measurement has a large error. The relevant researches aim at a mature measurement system that can acquire a large number of point clouds at a time and have high data measurement accuracy, such as the three-dimensional laser scanner. Only the accidental errors are analyzed and the impact of the calibration scheme is not taken into account on the calibration results. Therefore, these researches proposed optimization scheme is not applicable for the field calibration with small quantity and limited precision. This paper proposes an accurately calibration method, which is suitable for the scene on the issues of multiple subsystems relative position detecting complexity in a ball screen projection point targets tracking system. Take the ball screen as the world coordinate system, and mark center of the ball by subsystem to implement coordinate transformation of the projection point among the subsystems. The author studies the calibration principle and the projecting method, and provides a G-M solution model for the center of the ball screen in a calibration system coordinate system. Through Matlab simulation analysis of the error factor, simulated results show that the ball screen calibration precision can be effectively improved by reducing the distance between the subsystem and its center or perfecting the projection point spatial distribution. Eventually, this paper presents a calibration method based on the TLS and designs a virtual sphere, calibration device and finishes the experiments. The accuracy of the calibration is 0.44%, and the results meet the demand of quick and accurate site calibration.

  • 加载中
  • 图 1  球幕点目标投影与跟踪系统结构示意图

    Figure 1.  Point target control and projection system structure

    图 2  投射系统与球幕系统的模型示意图

    Figure 2.  The model of projection system and ball screen system

    图 3  标定点个数对标定精度的影响

    Figure 3.  The influence of point number on the calibration accuracy

    图 4  标定点之间的夹角对标定误差的影响

    Figure 4.  The influence of the angle between the fixed points on the calibration accuracy

    图 5  d对标定精度的影响

    Figure 5.  The influence of d on the calibration accuracy

    图 6  方位角误差对应的球心拟合误差

    Figure 6.  The influence of azimuth error

    图 7  俯仰角误差对应的球心拟合误差

    Figure 7.  The influence of pitching error

    图 8  测距误差对应的球心拟合误差

    Figure 8.  The influence of distance error

    图 9  多变量存在误差时拟合的球心分布

    Figure 9.  The influence of multivariate error

    图 10  实验装置示意图

    Figure 10.  Experimental schematic diagram

    图 11  实验装置图

    Figure 11.  The experimental device

    表 1  标定结果

    Table 1.  The calibration results

    实验 标定实验测得的标定器位移量/mm 标定器位移量补偿后的数据值/mm
    位置1 位置2 位置3 位置1 位置2 位置3
    1 197.08 297.52 494.59 200.27 301.66 502.35
    2 196.88 299.96 496.82 200.07 304.13 504.61
    3 199.83 293.54 490.99 203.07 297.62 498.70
    4 195.64 296.82 492.42 198.81 300.95 500.15
    5 195.36 293.90 489.25 198.53 297.98 496.93
    6 195.49 294.76 490.23 198.65 298.86 497.92
    7 195.02 296.09 491.10 198.18 300.21 498.81
    8 195.74 295.92 491.63 198.91 300.04 499.35
    9 197.53 297.34 493.33 200.73 301.48 501.07
    10 195.59 294.60 490.17 198.76 298.70 497.86
    11 196.88 299.96 496.82 200.07 304.13 504.61
    12 199.65 292.65 491.47 202.88 296.71 499.18
    13 195.69 296.37 492.03 198.86 300.49 499.76
    均值 196.81 295.89 492.27 200.00 300.00 500.00
    标准差 1.58 2.18 2.18 1.60 2.21 2.22
    下载: 导出CSV
  • [1]

    周立伟, 刘玉岩.目标识别与探测[M].北京:北京理工大学出版社, 2002.

    [2]

    董明. XX目标坐标测定仪伺服控制系统的设计与实现[D]. 南京: 南京理工大学, 2012.http://cdmd.cnki.com.cn/Article/CDMD-10288-1012319925.htm

    [3]

    孙鑫, 白加光, 王忠厚.球幕投影光学系统的设计与研究[J].光子学报, 2006, 35(11): 1766-1769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb200611035

    Sun X, Bai J G, Wang Z H. Design and study of the dome-screen projector optical system[J]. Acta Photonica Sinica, 2006, 35(11): 1766-1769. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb200611035

    [4]

    黄战华, 张超, 蔡怀宇, 等.基于二轴转台的运动目标球幕投影联合控制[J].光电工程, 2014, 41(9): 32-37. doi: 10.3969/j.issn.1003-501X.2014.09.006

    Huang Z H, Zhang C, Cai H Y, et al. The research of joint control algorithm of moving target dome projection based on two-axis turntable[J]. Opto-Electronic Engineering, 2014, 41(9): 32-37. doi: 10.3969/j.issn.1003-501X.2014.09.006

    [5]

    高教波, 李建军, 孙治家, 等.多波长激光复合点目标运动模拟[J].应用光学, 2011, 32(3): 562-567. http://www.opticsjournal.net/Journals/jgjs.htm

    Gao J B, Li J J, Sun Z J, et al. Simulation of multi-wavelength laser composite point target motion[J]. Journal of Applied Optics, 2011, 32(3): 562-567. http://www.opticsjournal.net/Journals/jgjs.htm

    [6]

    官云兰. 地面三维激光扫描数据处理中的若干问题研究[D]. 上海: 同济大学, 2008.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1450132

    [7]

    鲁铁定, 周世健, 张立亭, 等.基于整体最小二乘的地面激光扫描标靶球定位方法[J].大地测量与地球动力学, 2009, 29(4): 102-105. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dkxbydz200904022

    Lu T D, Zhou S J, Zhang L T, et al. Sphere target fixing of point cloud data based on TLS[J]. Journal of Geodesy and Geodynamics, 2009, 29(4): 102-105. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dkxbydz200904022

    [8]

    陈玮娴, 陈义, 袁庆, 等.加权总体最小二乘在三维激光标靶拟合中的应用[J].大地测量与地球动力学, 2010, 30(5): 90-96. http://mall.cnki.net/magazine/article/DKXB201005020.htm

    Chen W X, Chen Y, Yuan Q, et al. Application of weighted total least-squares to target fitting of three-dimensional laser scanning[J]. Journal of Geodesy and Geodynamics, 2010, 30(5): 90-96. http://mall.cnki.net/magazine/article/DKXB201005020.htm

    [9]

    Jazaeri S, Amiri-Simkooei A R, Sharifi M A. Iterative algorithm for weighted total least squares adjustment[J]. Survey Review, 2014, 46(334): 19-27. doi: 10.1179/1752270613Y.0000000052

    [10]

    王乐洋, 陈汉清, 林永达, 等.利用稳健WTLS方法进行三维激光扫描标靶球定位[J].大地测量与地球动力学, 2016, 36(8): 745-749. http://cdmd.cnki.com.cn/Article/CDMD-10701-2001005953.htm

    Wang L Y, Chen H Q, Lin Y D, et al. Spherical target positioning of 3D laser scanning by using robust WTLS method[J]. Journal of Geodesy and Geodynamics, 2016, 36(8): 745-749. http://cdmd.cnki.com.cn/Article/CDMD-10701-2001005953.htm

    [11]

    黄维彬.近代平差理论及其应用[M].北京:解放军出版社, 1992.

    [12]

    魏木生.广义最小二乘问题的理论和计算[M].北京:科技出版社, 2006.

    [13]

    Muellner J. Multispectral Target Simulation Dome for Hardware-in-the-loop Simulation of fire Control and Optronic Seeker Systems[M]. Orlando: SPIE, 2004, 5408: 22-32.

    [14]

    Schaffrin B. A note on constrained total least-squares estimation[J]. Linear Algebra and Its Applications, 2006, 417(1): 245-258. doi: 10.1016/j.laa.2006.03.044

    [15]

    张皓琳, 林嘉睿, 邾继贵.三维坐标转换精度及其影响因素的研究[J].光电工程, 2012, 39(10): 26-31. doi: 10.3969/j.issn.1003-501X.2012.10.005

    Zhang H L, Lin J R, Zhu J G. Three-dimensional coordinate transformation accuracy and its influencing factors[J]. Opto-Electronic Engineering, 2012, 39(10): 26-31. doi: 10.3969/j.issn.1003-501X.2012.10.005

  • 加载中

(11)

(1)

计量
  • 文章访问数:  6723
  • PDF下载数:  2690
  • 施引文献:  0
出版历程
收稿日期:  2017-10-25
修回日期:  2018-03-28
刊出日期:  2018-08-25

目录

/

返回文章
返回