面向机器视觉的云母槽精确定位系统

潘银松, 李政英, 王丽芳, 等. 面向机器视觉的云母槽精确定位系统[J]. 光电工程, 2018, 45(7): 170600. doi: 10.12086/oee.2018.170600
引用本文: 潘银松, 李政英, 王丽芳, 等. 面向机器视觉的云母槽精确定位系统[J]. 光电工程, 2018, 45(7): 170600. doi: 10.12086/oee.2018.170600
Pan Yinsong, Li Zhengying, Wang Lifang, et al. The precise positioning system of mica trough based on machine vision[J]. Opto-Electronic Engineering, 2018, 45(7): 170600. doi: 10.12086/oee.2018.170600
Citation: Pan Yinsong, Li Zhengying, Wang Lifang, et al. The precise positioning system of mica trough based on machine vision[J]. Opto-Electronic Engineering, 2018, 45(7): 170600. doi: 10.12086/oee.2018.170600

面向机器视觉的云母槽精确定位系统

  • 基金项目:
    国家自然科学基金资助项目(41371338);重庆市基础与前沿研究计划基金资助项目(cstc2013jcyj A40005)
详细信息
    作者简介:
    通讯作者: 潘银松, E-mail: panys@cqu.edu.cn
  • 中图分类号: TP391.8;TP273

The precise positioning system of mica trough based on machine vision

  • Fund Project: Supported by National Natural Science Fund (41371338) and Chongqing Fundamental and Frontier Research Program Fund (cstc2013jcyj A40005)
More Information
  • 针对机车电机整流子维修加工过程中,当前普遍应用的激光调制定位型云母槽削刻系统存在精度较低且需大量人工干预的问题,提出了一种基于机器视觉的云母槽精确定位方法,来克服电机整流子云母槽边缘难以精确提取的难点。本系统首先自主设计了精度补偿算法并构建了定位误差修正模型,基于此搭建了嵌入式系统平台,实现了对云母槽中心线的全自动快速精确定位;准确计算刻刀与中心线的偏差值;精确控制刀头移动到正确的下刻位置。实验结果表明,该仪器能精准计算云母槽中线位置,通过伺服电机对铣刀进行微调对准,并将刻刀定位误差控制在0.02 mm之内,实现了整个操作流程的自动化和精确化。

  • Overview: In the process of using locomotive motor commutator, due to the copper brush constantly rubbing, the copper scraps accumulate in the mica under the action of long time. In this case, the boundary between the copper and the mica slot becomes blurred, thus the motor commutator needs to be repaired on a regular basis. A traditional method is to use a laser-modulated positioning mica slotting system to perform engraving of the mica slot. However, the system detects the location of the mica slot depending on the reflectance of the laser, which is so different between copper bars and mica pieces. It can only get the approximate position of its center line and often appear missing and wrong situation. Therefore, it is necessary to perform error compensation by manual verification before each cutting to avoid unnecessary damage to the motor commutator, and at the same time, this method makes the work efficiency low. In order to improve the positioning accuracy and efficiency, this paper proposes an accurate positioning method of mica trough based on machine vision, which can effectively overcome the difficulties in precise extraction of the mica groove edges belong to motor commutator. In every working cycle, the system utilizes CCD camera to capture the current motor commutator surface image, then transfers the picture to the system’s numerical calculation module. Combing with the positioning error correction model constructed by the system, the self-designed precision compensation algorithm can accurately locate center line of the mica slot. After the positioning result transmitted to the main control unit, the servo system can control the burin to move to the designated position cutting the groove. When the above tasks are completed, the motor commutator can rotate into the next working cycle. The core part of the system is the precision compensation algorithm, which can precisely control each part of the center line positioning process of the mica slot, make precise positioning of the edge of the mica slot and avoid making the scratch mistaken for mica slot. Then finding out the correct location of the center line of the mica slot, the algorithm can also avoid the emergence of some extreme conditions to ensure the stable operation of the entire system. The experimental results show that the system can accurately calculate the midline position of the mica slot and control the positioning error of the knife between positive and negative 0.02 mm, which effectively improves the positioning accuracy and efficiency.

  • 加载中
  • 图 1  磨损的电机整流。(a)正在维修的电机整流子; (b)磨损的电机整流子局部细节图

    Figure 1.  Worn motor commutator. (a) Motor commutator being repaired; (b) Local detail view of worn motor commutator

    图 2  电机整流子转动示意图

    Figure 2.  Schematic diagram of rotating motor commutator

    图 3  精确定位原理示意图

    Figure 3.  Schematic diagram of precise positioning principle

    图 4  细分排序算法示例

    Figure 4.  Worn motor commutator

    图 5  计算上下边缘示意图

    Figure 5.  Schematic diagram for calculating the upper and lower edges

    图 6  边缘检测效果。(a) Sobel算子边缘检测效果图;(b) Laplacian算子边缘检测效果图

    Figure 6.  Edge detection effect. (a) Edge detection effect diagram of Sobel operator; (b) Edge detection effect diagram of Laplacian operator

    图 7  防误识算法图示

    Figure 7.  Schematic diagram of algorithms to prevent error recognition

    图 8  实验平台

    Figure 8.  Experimental platform

    图 9  精确定位实验数据结果

    Figure 9.  Experimental data results of accurate positioning

    图 10  两种定位系统误差值

    Figure 10.  Error value of two positioning systems

    表 1  两种定位系统误差值

    Table 1.  Error value of two positioning systems

    实验序号 A组误差/mm B组误差/mm
    1 +0.12 +0.02
    2 -0.08 0
    3 -0.24 +0.02
    4 -0.32 +0.02
    5 +0.20 0
    6 -0.04 -0.02
    7 -0.28 +0.02
    8 +0.18 -0.02
    9 +0.30 0
    10 -0.24 0
    下载: 导出CSV
  • [1]

    Fakih B, Dienwiebel M. The structure of tribolayers at the commutator and brush interface: a case study of failed and non-failed DC motors[J]. Tribology International, 2015, 92: 21-28. doi: 10.1016/j.triboint.2015.05.008

    [2]

    Masahiro S, Yomei Y, Hideki C, et al. Rotor repair method and rotor repair apparatus: 2256226A1[P]. 2010-12-01.

    [3]

    Clark S W, Stevens D. induction motor rotor bar damage evaluation with magnetic field analysis[J]. IEEE Transactions on Industry Applications, 2016, 52(2): 1469-1476. doi: 10.1109/TIA.2015.2508424

    [4]

    Fortes M Z, Dos Santos C H R, Oliveira R F, et al. Fast flashover identification methodology on brushed DC machines[J]. Wseas Transactions on Circuits and Systems, 2013, 13: 246-252. https://www.researchgate.net/profile/Marcio_Fortes/publication/267632154_Fast_Flashover_Identification_Methodology_on_Brushed_DC_Machines/links/546090ae0cf295b561620a34.pdf

    [5]

    何婷婷, 郭建强, 李芳, 等.光电跟踪伺服系统的研究[J].信息技术, 2013(8): 61-63. http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_Y1148167

    He T T, Guo J Q, Li F, et al. Photoelectric tracking servo system[J]. Information Technology, 2013(8): 61-63. http://industry.wanfangdata.com.cn/dl/Detail/Thesis?id=Thesis_Y1148167

    [6]

    刘壮, 李英博, 张浩钧, 等.菲涅尔透镜激光四象限定位系统光学设计[J].光电工程, 2016, 43(9): 62-66, 71. http://www.opticsjournal.net/Articles/Abstract?aid=OJ161209000068Yv2y5A

    Liu Z, Li Y B, Zhang H J, et al. Optical design for laser four-quadrant location system based on fresnel lens[J]. Opto-Electronic Engineering, 2016, 43(9): 62-66, 71. http://www.opticsjournal.net/Articles/Abstract?aid=OJ161209000068Yv2y5A

    [7]

    Guan G H, Zhai W Z. Design of a commutator automatic slotting machine based on ccd camera[C]//Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering. Washington, DC, 2012, 3: 689-693.

    [8]

    Isato M, Sawa K, Ueno T. Commutation phenomena and brush wear of dc motor at high speed rotation[J]. IEICE Transactions on Electronics, 2017(9): 716-722.

    [9]

    Zhang J H, Xu Y Y. Design of detection system of traction motor commutator based on computer vision[J]. Advanced Materials Research, 2012, 466-467: 1290-1294. doi: 10.4028/www.scientific.net/AMR.466-467

    [10]

    Litovchenko V V, Kokorin D V, Nazarov D V. A mathematical model of a commutator traction motor[J]. Russian Electrical Engineering, 2014, 85(8): 498-504. doi: 10.3103/S1068371214080082

    [11]

    Weyori B A, Boateng K O, Yeboah P K, et al. Design and implementation of the block matching hybrid median filter for noise removal in color images[J]. International Journal of Innovative Computing Information & Control, 2016, 12(6): 255-263. https://www.researchgate.net/profile/Benjamin_Weyori

    [12]

    Liu A, Zhao Z Y, Zhang C Q, et al. Median filtering forensics in digital images based on frequency-domain features[J]. Multimedia Tools and Applications, 2017, 76(21): 22119-22132. doi: 10.1007/s11042-017-4845-0

    [13]

    Gonzalez R C, Woods R E. Digital Image Processing[M]. 3rd Ed. The USA, Pearson Education, 2011: 347-348.

    [14]

    朱威, 韩巨峰, 陈朋, 等.基于噪声点多级检测的自适应中值滤波算法[J].光电工程, 2013, 40(10): 63-69. doi: 10.3969/j.issn.1003-501X.2013.10.011

    Zhu W, Han J F, Chen P, et al. Adaptive median filter algorithm based on multi-stage noise detection[J]. Opto-Electronic Engineering, 2013, 40(10): 63-69. doi: 10.3969/j.issn.1003-501X.2013.10.011

    [15]

    Aranda L A, Reviriego P, Maestro J A. Error detection technique for a median filter[J]. IEEE Transactions on Nuclear Science, 2017, 64(8): 2219-2226.

  • 加载中

(10)

(1)

计量
  • 文章访问数:  7028
  • PDF下载数:  3132
  • 施引文献:  0
出版历程
收稿日期:  2017-11-05
修回日期:  2018-04-16
刊出日期:  2018-07-01

目录

/

返回文章
返回