基于二值振幅调控的角向偏振光超振荡聚焦平面透镜

武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660
引用本文: 武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660
Wu Zhixiang, Jin Qijian, Zhang Kun, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electronic Engineering, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660
Citation: Wu Zhixiang, Jin Qijian, Zhang Kun, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electronic Engineering, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660

基于二值振幅调控的角向偏振光超振荡聚焦平面透镜

  • 基金项目:
    国家重点基础研究发展计划资助项目(2013CBA01700);国家自然科学基金资助项目(61575031, 61177093)
详细信息
    作者简介:
    通讯作者: 陈刚(1973-),男,博士,教授,主要从事微纳光学器件及系统的研究。E-mail:gchen1@cqu.edu.cn
  • 中图分类号: TN249

Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave

  • Fund Project: Supported by National Key Basic Research and Development Program of China (Program 973) (2013CBA01700) and China National Natural Science Foundation of China (61575031, 61177093)
More Information
  • 角向偏振聚焦光场在超分辨光学显微、粒子操控等领域有着重要的应用。为克服传统透镜体积大、不利于集成等不足,本文提出了一种基于二值振幅(0,1)调控的角向偏振光超振荡聚焦平面透镜。针对波长λ=632.8 nm,设计、制备了超振荡平面透镜样品。透镜半径为650λ,焦距为200λ,数值孔径NA=0.96。实验结果表明:聚焦光场在焦平面上形成的空心聚焦光场呈圆环结构;空心环内径半高全宽为0.368λ,小于超振荡判据(0.38λ/NA=0.398λ);最大旁瓣比为36.7%。该平面透镜具有结构尺寸小、厚度薄、便于加工等优点,可用于光学系统的微型化和集成化。

  • Overview: Overview: The generation of optical dark spots is attractive for various applications, such as optical microscopy, optical tweezers and nanolithography. Due to its unique focusing properties, azimuthally polarized wave is used to generate tight focused dark spot with conventional optics. However, high numerical optical lenses are bulky and expensive, and more importantly, the conventional optics are diffraction-limited. In recent years, there has been growing interest in developing planar lenses with small size, thin thickness and light weight. To further reduce the focusing spot size, the idea of super-oscillation was proposed to overcome this restriction. In addition, super-oscillation optical fields consist of only propagating waves and can generate sub-diffraction optical features in far field. Although, super-oscillatory dark spot has been demonstrated by focusing azimuthally polarized wave with a binary-phase (0, π) lens, it requires comparatively high precision in the growth of the dielectric layer with proper thickness to ensure the correct phase delay. In this paper, a binary-amplitude (0, 1) super-oscillatory planar lens is proposed for the focusing of azimuthally polarized wave and generation of optical dark spots with super-oscillatory size. Utilizing vectoral-angular-spectrum method and particle-swarm algorithms, a planar lens was designed with a radius of 650λ and focal length of 200λ for azimuthally polarized wave at wavelength of 632.8 nm. The corresponding numerical aperture is 0.96. In the experiment, a test system based on high-numerical-aperture microscope was used to obtain the 2-dimentinal optical intensity distribution. With a nano-positioner, the objective lens can scan the 2-dimentinal optical intensity distribution at different position along the optical axis. The experimental results demonstrate the generation of a hollow spot with circular ring shape on the focal plane. The inner full-width-at-half-maximum of the hollow spot is 0.368λ, smaller than the super-oscillatory criterion (0.398λ), and the maximum sidelobe ratio is about 36.7%. Such planar lenses are easy to fabricate. Their small size and ultra-thin thickness make them promising in system minimization and integration for different applications, such as optical microscopy, optical trapping and ultra-high density data storage.

  • 加载中
  • 图 1  基于二值振幅调控的角向偏振光超振荡聚焦平面透镜。(a)工作原理;(b)结构示意图,(上)俯视图和(下)横截面图

    Figure 1.  Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave. (a) Working principle; (b) Basic structures, (top) top view and (bottom) cross-section view

    图 2  理论设计的聚焦光场分布:光场在焦平面(z=200λ)上的强度分布(蓝色)和相位分布(红色)

    Figure 2.  The distribution of the focusing optical field obtained in numerical design: The optical intensity (blue) and phase distribution (red) on the focal plane at z=200λ

    图 3  Comsol Multiphysics数值仿真结果。(a)焦平面上的光场强度分布图;(b)焦平面上光场强度沿径向的分布曲线;(c)空心聚焦光场的峰值强度(红)、内径半高全宽(蓝)和旁瓣比(绿)沿光轴的分布,其中红色虚线和黑色虚线分别表示衍射极限(0.5λ/NA)和超振荡判据(0.38λ/NA)

    Figure 3.  The simulation results obtained with Comsol Multiphysics. (a) The optical intensity distribution on the focal plane; (b) The optical intensity distribution along the radial coordinate on the focal plane; (c) The peak intensity (red), full-width-at-half-maximum (blue) and sidelobe ratio (green) distribution along the optical axis, where the red-dotted line and the black-dotted line represent the diffraction-limit (0.5λ/NA) and the super-oscillation criterion (0.38λ/NA), respectively

    图 4  超振荡聚焦平面透镜扫描电镜照片

    Figure 4.  SEM pictures of the super-oscillatory focusing planar lens

    图 5  超振荡聚焦平面透镜测试系统

    Figure 5.  The schematic diagram of the testing system for super-oscillatory focusing planar lens

    图 6  超振荡聚焦平面透镜测试结果。(a)位于z=200.89λ处的焦平面二维光场强度分布图;(b)光场沿x轴方向(蓝色曲线)和y轴方向(红色曲线)的强度分布曲线;(c)在不同角度方向上的空心聚焦光场内径半高全宽。其中黑色虚线、红色虚线、蓝色点划线分别为衍射极限、超振荡判据和平均半高宽

    Figure 6.  The experimental results of the super-oscillatory planar lens. (a) The 2-dimensional intensity distribution on the focal plane at z=200.89λ; (b) the intensity distribution along the x-axis (blue curve) and y-axis (red curve), respectively, on the focal plane; (c) The values of the hollow spot FWHM in different direction, where the black-dashed line, red-dashed line and blue dash-dot line are the diffraction-limit, super-oscillation criterion and average FWHM

    图 7  实验结果与理论结果的对比。在传播平面上,z=194λz=206λ范围内,分别由(a)实验测量和(b) Comsol Multiphysics仿真获得的光场强度分布,以及相应的(c)光场峰值强度、(d)内径半高全宽和(e)旁瓣比等参数沿光轴的理论(红色实线)和实验(蓝色实线)分布曲线对比,其中黑色虚线和红色虚线分别表示衍射极限(0.5λ/NA)和超振荡判据(0.38λ/NA)

    Figure 7.  The comparison between experimental and theoretical results. In the propagation plane, the optical intensity distribution between z=194λ and z=206λ obtained by (a) experiment and (b) Comsol Multiphysics simulation, respectively. The corresponding distributions of (c) peak intensity, (d) inner full-width-at-half-maximum and (e) sidelobe ratio obtained by (a) Comsol Multiphysics simulation (red-solid) and experiment (blue-solid), where the black-dotted line and the red-dotted line indicate the diffraction-limit (0.5λ/NA) and super-oscillation criterion (0.38λ/NA), respectively

    表 1  超振荡聚焦平面透镜振幅分布

    Table 1.  The amplitude distribution of the super-oscillatory focusing planar lens

    Number of ring slit Transmittance of ring slit
    #1~#208 CA80 07FF C03F 80FC 1F0F 078F 1E38 E38E 718C 6339 98CC CCCC CCD9
    #209~#416 9336 4C9B 64DB 6492 4925 B6D2 5B49 6969 696B 4B5A D295 AD6B 52B5
    #417~#624 2B52 A54A 952A D52A 956A A552 AB55 4AAB 5556 AAB5 556A AAAD 5555
    #625~#832 4AAA AAAD 5555 5555 54AA AAAA AAAA AAAA AAAA AAAA AAAA AAAA AAAA
    #833~#1040 AAB5 5555 5555 554E AAAA AAB4 9555 5556 AAAA ACB5 5555 2AAA AAC5
    #1040~#1176 5556 2AAA B955 556A AAA5 5554 AAAA 9555 3A
    下载: 导出CSV
  • [1]

    Hell S W. Far-field optical nanoscopy[J]. Science, 2007, 316(5828): 1153-1158. doi: 10.1126/science.1137395

    [2]

    Moneron G, Hell S W. Two-photon Excitation STED Microscopy[J]. Optics Express, 2009, 17(17): 14567-14573. doi: 10.1364/OE.17.014567

    [3]

    Zhang D W, Yuan X C. Optical doughnut for optical tweezers[J]. Optics Letters, 2003, 28(9): 740-742. doi: 10.1364/OL.28.000740

    [4]

    Porfirev A P, Skidanov R V. Dark-hollow optical beams with a controllable shape for optical trapping in air[J]. Optics Express, 2015, 23(7): 8373-8382. doi: 10.1364/OE.23.008373

    [5]

    Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. http://europepmc.org/abstract/med/23784312

    [6]

    Hao X, Kuang C F, Wang T T, et al. Phase encoding for sharper focus of the azimuthally polarized beam[J]. Optics Letters, 2010, 35(23): 3928-3930. doi: 10.1364/OL.35.003928

    [7]

    Yuan G H, Wei S B, Yuan X C. Nondiffracting transversally polarized beam[J]. Optics Letters, 2011, 36(17): 3479-3481. doi: 10.1364/OL.36.003479

    [8]

    Hao X, Kuang C F, Li Y H, et al. Manipulation of doughnut focal spot by image inverting interferometry[J]. Optics Letters, 2012, 37(5): 821-823. doi: 10.1364/OL.37.000821

    [9]

    Tian B, Pu J X. Tight focusing of a double-ring-shaped, azimuthally polarized beam[J]. Optics Letters, 2011, 36(11): 2014-2016. doi: 10.1364/OL.36.002014

    [10]

    Lalithambigai K, Suresh P, Ravi V, et al. Generation of subwavelength super-long dark channel using high Na lens axicon[J]. Optics Letters, 2012, 37(6): 999-1001. http://www.ncbi.nlm.nih.gov/pubmed/22446203

    [11]

    Chen W G, Wang J, Zhao Z Y, et al. Large scale manipulation of the dark spot by phase modulation of azimuthally polarized light[J]. Optics Communications, 2015, 349: 125-131. doi: 10.1016/j.optcom.2015.03.024

    [12]

    Khonina S N, Golub I. Enlightening darkness to diffraction limit and beyond: Comparison and optimization of different polarizations for dark spot generation[J]. Journal of the Optical Society of America A, 2012, 29(7): 1470-1474. doi: 10.1364/JOSAA.29.001470

    [13]

    Berry M V, Popescu S. Evolution of quantum superoscillations, and optical superresolution without evanescent waves[J]. Journal of Physics A, 2006, 39(22): 6965-6977. doi: 10.1088/0305-4470/39/22/011

    [14]

    Rogers E T F, Zheludev N I. Optical super-oscillations: Sub-wavelength light focusing and super-resolution Imaging[J]. Journal of Optics, 2013, 15(9): 094008. doi: 10.1088/2040-8978/15/9/094008

    [15]

    Huang F M, Zheludev N I. Super-resolution without evanescent waves[J]. Nano Letters, 2009, 9(3): 1249-1254. doi: 10.1021/nl9002014

    [16]

    Rogers E T F, Lindberg J, Roy T, et al. A Super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. doi: 10.1038/nmat3280

    [17]

    Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108. doi: 10.1063/1.4774385

    [18]

    Kotlyar V V, Stafeev S S, Liu Y K, et al. Analysis of the shape of a subwavelength focal spot for the linearly polarized light[J]. Applied Optics, 2013, 52(3): 330-339. doi: 10.1364/AO.52.000330

    [19]

    Liu T, Tan J B, Liu J, et al. Vectorial design of super-oscillatory lens[J]. Optics Express, 2013, 21(13): 15090-15101. doi: 10.1364/OE.21.015090

    [20]

    Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Optics Express, 2014, 22(18): 22163-22171. doi: 10.1364/OE.22.022163

    [21]

    Liu T, Shen T, Yang S M, et al. Subwavelength focusing by binary multi-annular plates: Design theory and experiment[J]. Journal of Optics, 2015, 17(3): 035610. doi: 10.1088/2040-8978/17/3/035610

    [22]

    Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719. http://www.mendeley.com/research/ultrabroadband-superoscillatory-lens-composed-plasmonic-metasurfaces-subdiffraction-light-focusing/

    [23]

    Qin F, Huang K, Wu J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977. doi: 10.1038/srep09977

    [24]

    Chen G, Zhang K, Yu A P, et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Optics Express, 2016, 24(10): 11002-11008. doi: 10.1364/OE.24.011002

    [25]

    Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859. doi: 10.1038/srep38859

    [26]

    Diao J S, Yuan W Z, Yu Y T, et al. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles[J]. Optics Express, 2016, 24(3): 1924-1933. doi: 10.1364/OE.24.001924

    [27]

    Luo J, Zhao Z Y, Pu M B, et al. Tight focusing of radially and azimuthally polarized light with plasmonic metalens[J]. Optics Communications, 2015, 356: 445-450. doi: 10.1016/j.optcom.2015.08.025

    [28]

    Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Scientific Reports, 2016, 6: 37776. doi: 10.1038/srep37776

    [29]

    Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Scientific Reports, 2017, 7: 4697. doi: 10.1038/s41598-017-05060-2

    [30]

    Zhang S, Chen H, Wu Z X, et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Optics Express, 2017, 25(22): 27104-27118. doi: 10.1364/OE.25.027104

    [31]

    Chen G, Li Y Y, Wang X Y, et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photonics Technology Letters, 2016, 28(3): 335-338. doi: 10.1109/LPT.2015.2496148

    [32]

    陈刚, 温中泉, 武志翔.光学超振荡与超振荡光学器件[J].物理学报, 2017, 66(14): 56-75. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201714005&dbname=CJFD&dbcode=CJFQ

    Chen G, Wen Z Q, Wu Z X. Optical super-oscillation and super-oscillatory optical devices[J]. Acta Physica Sinica, 2017, 66(14): 56-75. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=wlxb201714005&dbname=CJFD&dbcode=CJFQ

    [33]

    Youngworth K, Brown T. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 2000, 7(2): 77-87. doi: 10.1364/OE.7.000077

    [34]

    Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 556-567. doi: 10.1109/TAP.2007.891552

    [35]

    Huang K, Ye H P, Teng J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152-157. http://www.deepdyve.com/lp/wiley/optimization-free-superoscillatory-lens-using-phase-and-amplitude-qKgI9ESsso

    [36]

    Liu T, Yang S M, Jiang Z D, et al. Electromagnetic exploration of far-field super-focusing nanostructured metasurfaces[J]. Optics Express, 2016, 24(15): 16297-16308. doi: 10.1364/OE.24.016297

    [37]

    Beresna M, Gecevičius M, Kazansky P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[Invited][J]. Optical Materials Express, 2011, 1(4): 783-795. doi: 10.1364/OME.1.000783

  • 加载中

(7)

(1)

计量
  • 文章访问数:  8906
  • PDF下载数:  3004
  • 施引文献:  0
出版历程
收稿日期:  2017-12-03
修回日期:  2018-02-08
刊出日期:  2018-04-01

目录

/

返回文章
返回