大口径压电倾斜镜模型辨识与控制

黄林海, 凡木文, 周睿, 等. 大口径压电倾斜镜模型辨识与控制[J]. 光电工程, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704
引用本文: 黄林海, 凡木文, 周睿, 等. 大口径压电倾斜镜模型辨识与控制[J]. 光电工程, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704
Huang Linhai, Fan Muwen, Zhou Rui, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electronic Engineering, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704
Citation: Huang Linhai, Fan Muwen, Zhou Rui, et al. System identification and control for large aperture fast-steering mirror driven by PZT[J]. Opto-Electronic Engineering, 2018, 45(3): 170704. doi: 10.12086/oee.2018.170704

大口径压电倾斜镜模型辨识与控制

  • 基金项目:
    国家自然科学基金资助项目(11643008)
详细信息
    通讯作者: 黄林海(1980-),男,博士,研究员,主要从事自适应光学技术的研究。E-mail:hlhai@ioe.ac.cn
  • 中图分类号: TH74

System identification and control for large aperture fast-steering mirror driven by PZT

  • Fund Project: Supported by National Natural Science Foundation of China (11643008)
More Information
  • 本文提出了一种基于随机梯度优化算法的倾斜镜模型辨识方法,实现对大口径压电倾斜镜的复杂频率响应规律的辨识与控制带宽提高。文章介绍了压电倾斜镜原理和数学模型,描述了随机梯度优化算法在模型辨识的应用过程,并通过实验验证的方式检验了算法辨识模型的准确性以及在提高系统控制带宽方面的能力;最后,利用随机梯度下降算法本文还开展了对抖动输入频谱的辨识,结合倾斜镜模型的辨识结果,获得了对特定频谱区域更高抑制能力的控制效果。

  • Overview: Fast steering mirror driven by piezoelectric material has been used widely for control of opto-axis stabilization. The system identification for such fast steering mirror is very important. It has decided whether we are able to reach the mirror's full correction potential. However, the system identification is difficult for mirror with large aperture, because we found that the larger aperture, the more complex of the mirror responding.

    Novel system identification method based on the stochastic parallel gradient descent (SPGD) algorithm is presented for the large aperture fast-steering mirror (FSM). The proposed method can identify the complicated frequency response of the large aperture FSM accurately and improve the correcting effect of the system. The principle and mathematical model of the piezoelectric fast-steering mirror (PZT-FSM) are stated briefly in the paper firstly. Then the use process of the SPGD algorithm in the system identification for the large aperture PZT-FSM is presented. A PZT-FSM with the diameter of 250 mm is taken as an example to test the effectiveness of the proposed method. Compared with the actual frequency response curves, the frequency response curves of the two kinds of models identified by different order (7th-order and 9th-order) are consistent with the actual curves. Especially for the 9th-order identified model, both the overall distribution of the curves and the local details are highly consistent with the actual curves. As a contrast, the results using the Levy method for identification are also presented. Levy method cannot accurately identify complex models. Even if the order of identification is increased, there is no significant improvement in performance.

    In order to verify the accuracy of the identified model, we conduct two confirmatory experiments. First, we explore the resonance elimination of PZT-FSM by the identified model. After the resonance elimination, the frequency response is close to the frequency response of a pure-delay system. The amplitude response of the system is close to the ideal case, and the fluctuation of the amplitude response is within ± 2 dB in the range of 0 Hz to 2000 Hz. The closed-loop control effects of PZT-FSM before and after the resonance elimination are presented in the next section, where we found that the error bandwidth of the PZT-FSM has been significantly improved after the resonance elimination. Under the same condition of overshoot, the closed-loop error bandwidth increases from 105 Hz to 210 Hz. We compared the correction capability of beam jitter before and after the resonance elimination. After the correction without resonance elimination, the root mean square (RMS) of the jitter amplitude declined from 11.6 μrad to 7.9μrad. However, after the resonance elimination and correction, the RMS of the jitter amplitude decreased to 3.5 μrad. The experimental results show that the proposed method can not only eliminate the resonance, but also improve the closed-loop error bandwidth.

    To expand the usage of the new method, the input jitter spectrum is also identified using the similar method, which enables us to get a higher correction effect for the special frequency region. Accurate model identification for the large aperture FSM is also meaningful to advanced control methods, such as LQG control and adaptive filters control method. Through the combination of these advanced control methods, on-line identification and correction of specific resonance frequency can be realized.

  • 加载中
  • 图 1  用于辨识压电倾斜镜系统模型光路结构示意图

    Figure 1.  Optical structure for piezoelectric fast-steering mirror system identification

    图 2  250 mm口径压电倾斜镜系统对不同频率的响应曲线

    Figure 2.  Frequency response of piezoelectric fast-steering mirror with a 250 mm aperture

    图 3  辨识模型与实测模型对不同频率的响应曲线。(a) 7阶模型辨识结果;(b) 9阶模型辨识结果;(c) 7阶模型辨识局部细节;(d) 9阶模型辨识局部细节

    Figure 3.  Frequency responses of identified model and detected models. (a) Identification of a 7th order model; (b) Identifi-cation of a 9th order model; (c) Local detail for the 7th order identification; (d) Local detail for the 9th order identification

    图 4  同样阶次条件下利用Levy方法辨识结果

    Figure 4.  Identification result using Levy method with the same identified order

    图 5  250 mm压电倾斜镜系统中消谐振后,系统的实测响应曲线

    Figure 5.  Actual detected frequency response after resonant depression for the 250 mm piezoelectric fast-steering mirror

    图 6  消谐振前后闭环误差控制曲线。(a)未消谐振闭环误差曲线;(b)消谐振后闭环误差曲线

    Figure 6.  Close loop of the FSM before and after resonant depression. (a) Close loop of the FSM without resonant depression; (b) Close loop of the FSM with resonant depression

    图 7  输入测试抖动随时间的变化曲线

    Figure 7.  The curl of input jitter against time

    图 8  消谐振前后倾斜镜校正残差分布

    Figure 8.  Residual jitter error with and without resonant depression

    图 9  (a) 输入抖动频谱分布和校正后残余抖动频谱分布;(b)积分功率谱曲线

    Figure 9.  (a) Power spectrums of input jitter and residual jitter error; (b) Power spectrum integral of (a)

    图 10  含输入抖动频谱成分的系统误差控制曲线

    Figure 10.  The close loop of the FSM considering input jitter spectrum

    图 11  将入射抖动频谱进行辨识后结合PZT倾斜镜模型进行抖动抑制效果。(a)输入抖动频谱分布和校正后残余抖动频谱分布;(b)积分功率谱曲线

    Figure 11.  The effect of jitter control combining identification of PZT-FSM and input jitter spectrum. (a) Power spectrum of input jitter and residual jitter error; (b) Corresponding power spectrum integral of (a)

    表 1  9阶参数模型辨识结果

    Table 1.  Identification results for the 9th order model

    序号 极点频率 零点频率 极点振荡因子 零点振荡因子
    1 1261.6 2243.2 0.021 0.384
    2 715.2 1337.4 0.192 0.464
    3 710.0 1186.8 0.020 0.030
    4 661.6 664.5 0.018 0.055
    5 625.9 649.3 0.019 0.117
    6 576.2 643.2 0.021 0.023
    7 528.2 577 0.822 0.047
    8 527.6 577 0.046 0.063
    9 298.6 304 0.016 0.020
    下载: 导出CSV
  • [1]

    吴琼雁, 王强, 彭起, 等.音圈电机驱动的快速控制反射镜高带宽控制[J].光电工程, 2004, 31(8): 15-18. http://d.wanfangdata.com.cn/Periodical_gdgc200408005.aspx

    Wu Q Y, Wang Q, Peng Q, et al. Wide bandwidth control of fast-steering mirror driven by voice coil motor[J]. Opto-Electronic Engineering, 2004, 31(8): 15-18. http://d.wanfangdata.com.cn/Periodical_gdgc200408005.aspx

    [2]

    Zhou Q K, Ben-Tzvi P, Fan D P, et al. Design of Fast Steering Mirror systems for precision laser beams steering[C]//International Workshop on Robotic and Sensors Environments, 2008: 144-149.http://ieeexplore.ieee.org/document/4669196/

    [3]

    李新阳, 凌宁, 陈东红, 等.自适应光学系统中高速倾斜反射镜的稳定控制[J].强激光与粒子束, 1999, 11(1): 31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY901.009.htm

    Li X Y, Ling N, Chen D H, et al. Stable control of the fast steering mirror in adaptive optics system[J]. High Power Laser and Particle Beams, 1999, 11(1): 31-36. http://www.cnki.com.cn/Article/CJFDTOTAL-QJGY901.009.htm

    [4]

    李新阳, 姜文汉.自适应光学控制系统的有效带宽分析[J].光学学报, 1997, 17(12): 1697-1702. doi: 10.3321/j.issn:0253-2239.1997.12.020

    Li X Y, Jiang W H. Effective bandwidth analysis of adaptive optics control system[J]. Acta Optica Sinica, 1997, 17(12): 1697-1702. doi: 10.3321/j.issn:0253-2239.1997.12.020

    [5]

    丁科, 黄永梅, 马佳光, 等.快速反射镜的误差自适应前馈复合控制[J].中国激光, 2011, 38(7): 0705007. http://www.opticsjournal.net/abstract.htm?id=OJ110628000061x4z7C9

    Ding K, Huang Y M, Ma J G, et al. Error adaptive feedforward composite control of fast-steering-mirror[J]. Chinese Journal of Lasers, 2011, 38(7): 0705007. http://www.opticsjournal.net/abstract.htm?id=OJ110628000061x4z7C9

    [6]

    Monirabbasi S, Gibson S. Adaptive control in an adaptive optics experiment[J]. Journal of the Optical Society of America A Optics Image Science, and Vision, 2010, 27(11): A84-A96. doi: 10.1364/JOSAA.27.000A84

    [7]

    Kim B S, Gibson S, Tsao T C. Adaptive control of a tilt mirror for laser beam steering[C]//Proceedings of the 2004 American Control Conference, 2004, 4: 3417-3421.http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1384437

    [8]

    王强, 陈科, 付承毓.基于闭环特性的音圈电机驱动快速反射镜控制[J].光电工程, 2005, 32(2): 9-11, 18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc200502003

    Wang Q, Chen K, Fu C Y. Method for controlling fast-steering mirror driven by voice coil motor based on the closed-loop performance[J]. Opto-Electronic Engineering, 2005, 32(2): 9-11, 18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc200502003

    [9]

    Kim J J, Nagashima M, Agrawal B N. Optical beam jitter control for the NPS HEL beam control testbed[R]. Monterey, CA: Naval Postgraduate School Monterey CA, 2011.

    [10]

    Watkins R J, Chen H J, Agrawal B N, et al. Optical beam jitter control[J]. Proceedings of SPIE, 2004, 5338: 204-213. doi: 10.1117/12.529457

    [11]

    时晶晶, 姚佰栋, 鲁加国.高速倾斜镜建模与传递函数辨识[J].红外与激光工程, 2013, 42(10): 2748-2752. doi: 10.3969/j.issn.1007-2276.2013.10.029

    Shi J J, Yao B D, Lu J G. Modeling and transfer function identification of FSM system[J]. Infrared and Laser Engineering, 2013, 42(10): 2748-2752. doi: 10.3969/j.issn.1007-2276.2013.10.029

    [12]

    胡浩军, 马佳光, 王强, 等.快速控制反射镜系统中的传递函数辨识[J].光电工程, 2005, 32(7): 1-3, 10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc200507001

    Hu H J, Ma J G, Wang Q, et al. Transfer function identification in a fast steering mirror system[J]. Opto-Electronic Engineering, 2005, 32(7): 1-3, 10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc200507001

    [13]

    凡木文, 黄林海, 李梅, 等.压电倾斜镜的高压驱动及高速控制[J].光学精密工程, 2015, 23(10): 2803-2809. http://www.eope.net/gxjmgc/CN/abstract/abstract15999.shtml

    Fan M W, Huang L H, Li M, et al. High-voltage drive and control for piezoelectric fast steering mirror[J]. Optics and Precision Engineering, 2015, 23(10): 2803-2809. http://www.eope.net/gxjmgc/CN/abstract/abstract15999.shtml

    [14]

    凡木文, 黄林海, 李梅, 等.抑制光束抖动的压电倾斜镜高带宽控制[J].物理学报, 2016, 65(2): 024209. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_wlxb201602020

    Fan M W, Huang L H, Li M, et al. High-bandwidth control of piezoelectric steering mirror for suppression of laser beam jitter[J]. Acta Physica Sinica, 2016, 65(2): 024209. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_wlxb201602020

    [15]

    耿超, 谭毅, 牟进博, 等.多单元光纤激光阵列的倾斜控制实验研究[J].物理学报, 2013, 62(2): 024206. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201302036.htm

    Geng C, Tan Y, Mu J B, et al. Experimental research of tip/tilt control of a multi-channel fiber-laser array[J]. Acta Physica Sinica, 2013, 62(2): 024206. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201302036.htm

    [16]

    Zheng Y, Shen F. Simulation and analysis of stochastic parallel gradient descent control algorithm for coherent combining[J]. Proceedings of SPIE, 2009, 7156: 71563C. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1331267

    [17]

    郑轶, 沈锋.基于随机并行梯度下降算法的两路光纤激光相干合成锁相控制技术的研究[J].中国激光, 2010, 37(3): 631-635. http://www.cqvip.com/QK/95389X/201003/33366277.html

    Zheng Y, Shen F. Research on phase-locking technique for 2-channels fiber laser coherent beam combination based on stochastic parallel gradient descent algorithm[J]. Chinese Journal of Lasers, 2010, 37(3): 631-635. http://www.cqvip.com/QK/95389X/201003/33366277.html

  • 加载中

(11)

(1)

计量
  • 文章访问数:  9006
  • PDF下载数:  4043
  • 施引文献:  0
出版历程
收稿日期:  2017-12-21
修回日期:  2018-02-06
刊出日期:  2018-03-15

目录

/

返回文章
返回